Meng Dan, Shan Yu, Weihua Lin, Mohamed Abdellah, Zhen Guo, Zhao-Qing Liu, Tõnu Pullerits, Kaibo Zheng, Ying Zhou
{"title":"平衡用于太阳能制氢的双界面光催化剂中的电荷分离和表面反应动力学。","authors":"Meng Dan, Shan Yu, Weihua Lin, Mohamed Abdellah, Zhen Guo, Zhao-Qing Liu, Tõnu Pullerits, Kaibo Zheng, Ying Zhou","doi":"10.1002/adma.202415138","DOIUrl":null,"url":null,"abstract":"<p><p>Solar-driven photocatalytic green hydrogen (H<sub>2</sub>) evolution reaction presents a promising route toward solar-to-chemical fuel conversion. However, its efficiency has been hindered by the desynchronization of fast photogenerated charge carriers and slow surface reaction kinetics. This work introduces a paradigm shift in photocatalyst design by focusing on the synchronization of charge transport and surface reactions through the use of twin structures as a unique platform. With CdS twin structure (CdS-T) as a model, the role of twin boundaries in modulating surface reactions and facilitating charge migration is systematically investigated. Utilizing transient absorption (TA) and time-resolved infrared (TRIR) spectroscopies, it is revealed that CdS-T achieves charge separation on a picosecond timescale and, importantly, the surface reaction at the twin boundary with the involvement of holes also occurs within 100 ps to 3 ns. This synchronization of charge donation and surface regeneration significantly enhances the hydrogen evolution process. Accordingly, CdS-T exhibits superior activity for visible light photocatalytic H<sub>2</sub> production, withthe H<sub>2</sub> production rate of 55.61 mmol h<sup>-1</sup> g<sup>-1</sup> and remarkable stability (>30 h), outperforming pristine CdS significantly. This study underscores the transformative potential of twin structures in photocatalysis, offering a new avenue to synchronize charge transport and surface reactions.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":" ","pages":"e2415138"},"PeriodicalIF":27.4000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Balancing the Charge Separation and Surface Reaction Dynamics in Twin-Interface Photocatalysts for Solar-to-Hydrogen Production.\",\"authors\":\"Meng Dan, Shan Yu, Weihua Lin, Mohamed Abdellah, Zhen Guo, Zhao-Qing Liu, Tõnu Pullerits, Kaibo Zheng, Ying Zhou\",\"doi\":\"10.1002/adma.202415138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Solar-driven photocatalytic green hydrogen (H<sub>2</sub>) evolution reaction presents a promising route toward solar-to-chemical fuel conversion. However, its efficiency has been hindered by the desynchronization of fast photogenerated charge carriers and slow surface reaction kinetics. This work introduces a paradigm shift in photocatalyst design by focusing on the synchronization of charge transport and surface reactions through the use of twin structures as a unique platform. With CdS twin structure (CdS-T) as a model, the role of twin boundaries in modulating surface reactions and facilitating charge migration is systematically investigated. Utilizing transient absorption (TA) and time-resolved infrared (TRIR) spectroscopies, it is revealed that CdS-T achieves charge separation on a picosecond timescale and, importantly, the surface reaction at the twin boundary with the involvement of holes also occurs within 100 ps to 3 ns. This synchronization of charge donation and surface regeneration significantly enhances the hydrogen evolution process. Accordingly, CdS-T exhibits superior activity for visible light photocatalytic H<sub>2</sub> production, withthe H<sub>2</sub> production rate of 55.61 mmol h<sup>-1</sup> g<sup>-1</sup> and remarkable stability (>30 h), outperforming pristine CdS significantly. This study underscores the transformative potential of twin structures in photocatalysis, offering a new avenue to synchronize charge transport and surface reactions.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\" \",\"pages\":\"e2415138\"},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202415138\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202415138","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Balancing the Charge Separation and Surface Reaction Dynamics in Twin-Interface Photocatalysts for Solar-to-Hydrogen Production.
Solar-driven photocatalytic green hydrogen (H2) evolution reaction presents a promising route toward solar-to-chemical fuel conversion. However, its efficiency has been hindered by the desynchronization of fast photogenerated charge carriers and slow surface reaction kinetics. This work introduces a paradigm shift in photocatalyst design by focusing on the synchronization of charge transport and surface reactions through the use of twin structures as a unique platform. With CdS twin structure (CdS-T) as a model, the role of twin boundaries in modulating surface reactions and facilitating charge migration is systematically investigated. Utilizing transient absorption (TA) and time-resolved infrared (TRIR) spectroscopies, it is revealed that CdS-T achieves charge separation on a picosecond timescale and, importantly, the surface reaction at the twin boundary with the involvement of holes also occurs within 100 ps to 3 ns. This synchronization of charge donation and surface regeneration significantly enhances the hydrogen evolution process. Accordingly, CdS-T exhibits superior activity for visible light photocatalytic H2 production, withthe H2 production rate of 55.61 mmol h-1 g-1 and remarkable stability (>30 h), outperforming pristine CdS significantly. This study underscores the transformative potential of twin structures in photocatalysis, offering a new avenue to synchronize charge transport and surface reactions.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.