Dhanapaul Selvaraj Aniesrani Delfiya, Suresh Amrutha, Pachareentavita Muhamed Ashraf, Subramani Murali, Kuruthukulam Chacko Neethu, George Ninan
{"title":"太阳能干燥器采用双通道平板太阳能集热器和碳纳米管涂层吸收器表面。","authors":"Dhanapaul Selvaraj Aniesrani Delfiya, Suresh Amrutha, Pachareentavita Muhamed Ashraf, Subramani Murali, Kuruthukulam Chacko Neethu, George Ninan","doi":"10.1007/s11356-024-35512-y","DOIUrl":null,"url":null,"abstract":"<p><p>The present study details the development of a solar dryer with double pass flat plate solar collector having carbon nanodots (CNDs) coated absorber surface. Among the various concentrations of CNDs (0.1, 0.2, 0.5, 1, and 2%), the 0.5% CNDs coated absorber surface recorded the highest absorptance and lowest reflectance with higher spectral selectivity of 0.933. Hence, the 0.5% coating was selected as the optimum concentration and coated over the absorber surface of flat plate solar air collector. SEM image of black painted surface is clear and smooth and CNDs coated absorber surface is having dispersed particle with rough surface. FTIR absorption peak values revealed that the presence of black paint and CNDs in the 0.5% CNDs coated aluminium sheet. The efficiency of collector coated with 0.5% CNDs was calculated at various air flow rate of 0.008, 0.016, 0.018, and 0.021 kg/s and results revealed that the rise in air flow rate from 0.008 to 0.021 kg/s increased the efficiency from 39.22 to 82.99%. The solar dryer connected with the developed collector was tested for the performance and the drying studies revealed that shrimp and false white sardine required 10 h and 11 h drying time during the experimental studies.</p>","PeriodicalId":545,"journal":{"name":"Environmental Science and Pollution Research","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solar dryer with double pass flat plate solar collector and carbon nanodots-coated absorber surface.\",\"authors\":\"Dhanapaul Selvaraj Aniesrani Delfiya, Suresh Amrutha, Pachareentavita Muhamed Ashraf, Subramani Murali, Kuruthukulam Chacko Neethu, George Ninan\",\"doi\":\"10.1007/s11356-024-35512-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The present study details the development of a solar dryer with double pass flat plate solar collector having carbon nanodots (CNDs) coated absorber surface. Among the various concentrations of CNDs (0.1, 0.2, 0.5, 1, and 2%), the 0.5% CNDs coated absorber surface recorded the highest absorptance and lowest reflectance with higher spectral selectivity of 0.933. Hence, the 0.5% coating was selected as the optimum concentration and coated over the absorber surface of flat plate solar air collector. SEM image of black painted surface is clear and smooth and CNDs coated absorber surface is having dispersed particle with rough surface. FTIR absorption peak values revealed that the presence of black paint and CNDs in the 0.5% CNDs coated aluminium sheet. The efficiency of collector coated with 0.5% CNDs was calculated at various air flow rate of 0.008, 0.016, 0.018, and 0.021 kg/s and results revealed that the rise in air flow rate from 0.008 to 0.021 kg/s increased the efficiency from 39.22 to 82.99%. The solar dryer connected with the developed collector was tested for the performance and the drying studies revealed that shrimp and false white sardine required 10 h and 11 h drying time during the experimental studies.</p>\",\"PeriodicalId\":545,\"journal\":{\"name\":\"Environmental Science and Pollution Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science and Pollution Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s11356-024-35512-y\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11356-024-35512-y","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Solar dryer with double pass flat plate solar collector and carbon nanodots-coated absorber surface.
The present study details the development of a solar dryer with double pass flat plate solar collector having carbon nanodots (CNDs) coated absorber surface. Among the various concentrations of CNDs (0.1, 0.2, 0.5, 1, and 2%), the 0.5% CNDs coated absorber surface recorded the highest absorptance and lowest reflectance with higher spectral selectivity of 0.933. Hence, the 0.5% coating was selected as the optimum concentration and coated over the absorber surface of flat plate solar air collector. SEM image of black painted surface is clear and smooth and CNDs coated absorber surface is having dispersed particle with rough surface. FTIR absorption peak values revealed that the presence of black paint and CNDs in the 0.5% CNDs coated aluminium sheet. The efficiency of collector coated with 0.5% CNDs was calculated at various air flow rate of 0.008, 0.016, 0.018, and 0.021 kg/s and results revealed that the rise in air flow rate from 0.008 to 0.021 kg/s increased the efficiency from 39.22 to 82.99%. The solar dryer connected with the developed collector was tested for the performance and the drying studies revealed that shrimp and false white sardine required 10 h and 11 h drying time during the experimental studies.
期刊介绍:
Environmental Science and Pollution Research (ESPR) serves the international community in all areas of Environmental Science and related subjects with emphasis on chemical compounds. This includes:
- Terrestrial Biology and Ecology
- Aquatic Biology and Ecology
- Atmospheric Chemistry
- Environmental Microbiology/Biobased Energy Sources
- Phytoremediation and Ecosystem Restoration
- Environmental Analyses and Monitoring
- Assessment of Risks and Interactions of Pollutants in the Environment
- Conservation Biology and Sustainable Agriculture
- Impact of Chemicals/Pollutants on Human and Animal Health
It reports from a broad interdisciplinary outlook.