优化矫形鞋垫中聚合物陀螺结构的机械响应。

IF 3 3区 医学 Q2 BIOPHYSICS
Dayna Cracknell, Mark Battley, Justin Fernandez, Maedeh Amirpour
{"title":"优化矫形鞋垫中聚合物陀螺结构的机械响应。","authors":"Dayna Cracknell, Mark Battley, Justin Fernandez, Maedeh Amirpour","doi":"10.1007/s10237-024-01912-9","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to explore the mechanical behaviour of polymeric gyroid structures under compression within the context of orthotic insoles, focussing on custom optimisation for lower peak plantar pressures. This research evaluates the compressive response of gyroid structures using a combination of experimental testing and numerical modelling. Stereolithography was used to manufacture gyroid samples for experimental tests, and explicit finite element analysis was used to model the gyroid's response numerically. Hyperfoam, first-order polynomial, and second-order polynomial hyperelastic constitutive models were considered to homogenise the mechanical response of the structure. The homogenised properties of the structure were then implemented in an optimisation algorithm to obtain the optimal gyroid structure for a given subject by minimising the standard distribution of plantar pressures. Findings indicate that the compressive response polymeric gyroid structures can be represented with a homogeneous material. The hyperfoam model was chosen due to its accuracy and interpolation quality. The optimisation process successfully identified configurations that maximise the mechanical advantages of gyroid lattices, demonstrating significant improvements in plantar pressure distributions. The optimised insole showed a 30% reduction in the standard deviation of the plantar pressure and a 10% reduction in the peak stress. The optimisation method reduced peak pressures by 12.2 kPa compared to a traditional medium-density Poron orthotic insole, and 94.3 kPa compared barefoot conditions. The mechanical response of gyroid structures has successfully been modelled, analysed and homogenised. The study concludes that custom gyroid-based orthotic insoles offer a promising solution for personalised foot care.</p>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The mechanical response of polymeric gyroid structures in an optimised orthotic insole.\",\"authors\":\"Dayna Cracknell, Mark Battley, Justin Fernandez, Maedeh Amirpour\",\"doi\":\"10.1007/s10237-024-01912-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aims to explore the mechanical behaviour of polymeric gyroid structures under compression within the context of orthotic insoles, focussing on custom optimisation for lower peak plantar pressures. This research evaluates the compressive response of gyroid structures using a combination of experimental testing and numerical modelling. Stereolithography was used to manufacture gyroid samples for experimental tests, and explicit finite element analysis was used to model the gyroid's response numerically. Hyperfoam, first-order polynomial, and second-order polynomial hyperelastic constitutive models were considered to homogenise the mechanical response of the structure. The homogenised properties of the structure were then implemented in an optimisation algorithm to obtain the optimal gyroid structure for a given subject by minimising the standard distribution of plantar pressures. Findings indicate that the compressive response polymeric gyroid structures can be represented with a homogeneous material. The hyperfoam model was chosen due to its accuracy and interpolation quality. The optimisation process successfully identified configurations that maximise the mechanical advantages of gyroid lattices, demonstrating significant improvements in plantar pressure distributions. The optimised insole showed a 30% reduction in the standard deviation of the plantar pressure and a 10% reduction in the peak stress. The optimisation method reduced peak pressures by 12.2 kPa compared to a traditional medium-density Poron orthotic insole, and 94.3 kPa compared barefoot conditions. The mechanical response of gyroid structures has successfully been modelled, analysed and homogenised. The study concludes that custom gyroid-based orthotic insoles offer a promising solution for personalised foot care.</p>\",\"PeriodicalId\":489,\"journal\":{\"name\":\"Biomechanics and Modeling in Mechanobiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomechanics and Modeling in Mechanobiology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10237-024-01912-9\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics and Modeling in Mechanobiology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10237-024-01912-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在探索聚合物陀螺结构在矫形鞋垫中受压时的机械性能,重点是定制优化以降低足底压力峰值。本研究采用实验测试和数值建模相结合的方法,对陀螺结构的压缩响应进行评估。立体光刻技术用于制造陀螺样品进行实验测试,显式有限元分析用于对陀螺反应进行数值建模。考虑采用超泡沫、一阶多项式和二阶多项式超弹性构成模型来均匀结构的机械响应。然后将结构的均质化属性应用于优化算法,通过最小化足底压力的标准分布,为给定的受试者获得最佳的陀螺结构。研究结果表明,聚合物陀螺结构的压缩响应可以用均质材料来表示。之所以选择超泡沫模型,是因为其准确性和插值质量。优化过程成功地确定了能最大限度发挥陀螺格机械优势的配置,显著改善了足底压力分布。优化后的鞋垫足底压力标准偏差降低了 30%,峰值压力降低了 10%。与传统的中等密度波隆矫形鞋垫相比,优化方法将峰值压力降低了 12.2 千帕,与赤足条件相比降低了 94.3 千帕。陀螺结构的机械响应已成功建模、分析和均质化。研究得出结论,基于陀螺的定制矫形鞋垫为个性化足部护理提供了一种前景广阔的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The mechanical response of polymeric gyroid structures in an optimised orthotic insole.

This study aims to explore the mechanical behaviour of polymeric gyroid structures under compression within the context of orthotic insoles, focussing on custom optimisation for lower peak plantar pressures. This research evaluates the compressive response of gyroid structures using a combination of experimental testing and numerical modelling. Stereolithography was used to manufacture gyroid samples for experimental tests, and explicit finite element analysis was used to model the gyroid's response numerically. Hyperfoam, first-order polynomial, and second-order polynomial hyperelastic constitutive models were considered to homogenise the mechanical response of the structure. The homogenised properties of the structure were then implemented in an optimisation algorithm to obtain the optimal gyroid structure for a given subject by minimising the standard distribution of plantar pressures. Findings indicate that the compressive response polymeric gyroid structures can be represented with a homogeneous material. The hyperfoam model was chosen due to its accuracy and interpolation quality. The optimisation process successfully identified configurations that maximise the mechanical advantages of gyroid lattices, demonstrating significant improvements in plantar pressure distributions. The optimised insole showed a 30% reduction in the standard deviation of the plantar pressure and a 10% reduction in the peak stress. The optimisation method reduced peak pressures by 12.2 kPa compared to a traditional medium-density Poron orthotic insole, and 94.3 kPa compared barefoot conditions. The mechanical response of gyroid structures has successfully been modelled, analysed and homogenised. The study concludes that custom gyroid-based orthotic insoles offer a promising solution for personalised foot care.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomechanics and Modeling in Mechanobiology
Biomechanics and Modeling in Mechanobiology 工程技术-工程:生物医学
CiteScore
7.10
自引率
8.60%
发文量
119
审稿时长
6 months
期刊介绍: Mechanics regulates biological processes at the molecular, cellular, tissue, organ, and organism levels. A goal of this journal is to promote basic and applied research that integrates the expanding knowledge-bases in the allied fields of biomechanics and mechanobiology. Approaches may be experimental, theoretical, or computational; they may address phenomena at the nano, micro, or macrolevels. Of particular interest are investigations that (1) quantify the mechanical environment in which cells and matrix function in health, disease, or injury, (2) identify and quantify mechanosensitive responses and their mechanisms, (3) detail inter-relations between mechanics and biological processes such as growth, remodeling, adaptation, and repair, and (4) report discoveries that advance therapeutic and diagnostic procedures. Especially encouraged are analytical and computational models based on solid mechanics, fluid mechanics, or thermomechanics, and their interactions; also encouraged are reports of new experimental methods that expand measurement capabilities and new mathematical methods that facilitate analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信