Luigi Vaccaro, Federica Valentini, Shaomin Chen, Giulia Brufani, Yanlong Gu
{"title":"从生物质废弃物中提取的 Ni/PiNe 异构催化剂:低负载、无配体的 Suzukii-Miyaura 交叉偶联。","authors":"Luigi Vaccaro, Federica Valentini, Shaomin Chen, Giulia Brufani, Yanlong Gu","doi":"10.1002/cssc.202402011","DOIUrl":null,"url":null,"abstract":"<p><p>An efficient Ni-based heterogeneous catalyst from pine needles urban waste valorization was designed and developed with a resource recycling strategy. The Ni/PiNe catalyst was fully characterized and tested in the Suzuki-Miyaura coupling under microwave irradiation. Although Ni is a promising candidate for replacing Pd-based catalytic systems, it generally requires a high catalyst amount and the exploitation of ligands and additives to enhance the reaction rate. On the contrary, with our new Ni/PiNe, 30 different products were efficiently synthesized with an isolated yield of up to 93%, using a very low catalyst amount and in the absence of ligands. Furthermore, the Ni/PiNe catalyst also showed good durability for consecutive cycles and an impressive TON value (1140). In addition to the catalytic efficiency in short reaction time and to the stability and durability under MW irradiation, the Ni/PiNe allowed for further optimization, achieving a low E-factor value (14.0), thus highlighting the potential in further reducing the waste and costs associated to the process.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402011"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ni/PiNe Heterogeneous Catalyst from Biomass Waste: Low-Loading, Ligand-Free Suzuki-Miyaura Cross-Coupling.\",\"authors\":\"Luigi Vaccaro, Federica Valentini, Shaomin Chen, Giulia Brufani, Yanlong Gu\",\"doi\":\"10.1002/cssc.202402011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>An efficient Ni-based heterogeneous catalyst from pine needles urban waste valorization was designed and developed with a resource recycling strategy. The Ni/PiNe catalyst was fully characterized and tested in the Suzuki-Miyaura coupling under microwave irradiation. Although Ni is a promising candidate for replacing Pd-based catalytic systems, it generally requires a high catalyst amount and the exploitation of ligands and additives to enhance the reaction rate. On the contrary, with our new Ni/PiNe, 30 different products were efficiently synthesized with an isolated yield of up to 93%, using a very low catalyst amount and in the absence of ligands. Furthermore, the Ni/PiNe catalyst also showed good durability for consecutive cycles and an impressive TON value (1140). In addition to the catalytic efficiency in short reaction time and to the stability and durability under MW irradiation, the Ni/PiNe allowed for further optimization, achieving a low E-factor value (14.0), thus highlighting the potential in further reducing the waste and costs associated to the process.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e202402011\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202402011\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202402011","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Ni/PiNe Heterogeneous Catalyst from Biomass Waste: Low-Loading, Ligand-Free Suzuki-Miyaura Cross-Coupling.
An efficient Ni-based heterogeneous catalyst from pine needles urban waste valorization was designed and developed with a resource recycling strategy. The Ni/PiNe catalyst was fully characterized and tested in the Suzuki-Miyaura coupling under microwave irradiation. Although Ni is a promising candidate for replacing Pd-based catalytic systems, it generally requires a high catalyst amount and the exploitation of ligands and additives to enhance the reaction rate. On the contrary, with our new Ni/PiNe, 30 different products were efficiently synthesized with an isolated yield of up to 93%, using a very low catalyst amount and in the absence of ligands. Furthermore, the Ni/PiNe catalyst also showed good durability for consecutive cycles and an impressive TON value (1140). In addition to the catalytic efficiency in short reaction time and to the stability and durability under MW irradiation, the Ni/PiNe allowed for further optimization, achieving a low E-factor value (14.0), thus highlighting the potential in further reducing the waste and costs associated to the process.
期刊介绍:
ChemSusChem
Impact Factor (2016): 7.226
Scope:
Interdisciplinary journal
Focuses on research at the interface of chemistry and sustainability
Features the best research on sustainability and energy
Areas Covered:
Chemistry
Materials Science
Chemical Engineering
Biotechnology