Gerardo Salinas, Tatjana Safarik, Marta Meneghello, Sabrina Bichon, Sebastien Gounel, Nicolas Mano, Alexander Kuhn
{"title":"增强生物燃料电池性能的磁流体动力学。","authors":"Gerardo Salinas, Tatjana Safarik, Marta Meneghello, Sabrina Bichon, Sebastien Gounel, Nicolas Mano, Alexander Kuhn","doi":"10.1002/chem.202403329","DOIUrl":null,"url":null,"abstract":"<p><p>Biofuel cells have become an interesting alternative for the design of sustainable energy conversion systems with multiple applications ranging from biosensing and bioelectronics to autonomously moving devices. However, as an electrochemical system, their performance is intimately related to mass transport conditions. In this work, the magnetohydrodynamic (MHD) effect is studied as an easy and straightforward alternative to enhance the performance of a biofuel cell based on the enzymes glucose oxidase (GOx) and bilirubin oxidase (BOD). The synergetic effect between the electric and ionic currents, produced by the enzymatic redox reactions, and a magnetic field orthogonal to the surface of the electrodes, leads to the formation of localized magnetohydrodynamic vortexes. Such an integrated convective regime generates an increase of the bioelectrocatalytic current and its concomitant power output in the presence of the external magnetic field. In addition, by fine-tuning the spatial arrangement of the anode and cathode, it is possible to benefit from the sum of anodic and cathodic MHD vortexes, leading to an enhanced power output of up to 300%.</p>","PeriodicalId":144,"journal":{"name":"Chemistry - A European Journal","volume":" ","pages":"e202403329"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetohydrodynamic Enhancement of Biofuel Cell Performance.\",\"authors\":\"Gerardo Salinas, Tatjana Safarik, Marta Meneghello, Sabrina Bichon, Sebastien Gounel, Nicolas Mano, Alexander Kuhn\",\"doi\":\"10.1002/chem.202403329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biofuel cells have become an interesting alternative for the design of sustainable energy conversion systems with multiple applications ranging from biosensing and bioelectronics to autonomously moving devices. However, as an electrochemical system, their performance is intimately related to mass transport conditions. In this work, the magnetohydrodynamic (MHD) effect is studied as an easy and straightforward alternative to enhance the performance of a biofuel cell based on the enzymes glucose oxidase (GOx) and bilirubin oxidase (BOD). The synergetic effect between the electric and ionic currents, produced by the enzymatic redox reactions, and a magnetic field orthogonal to the surface of the electrodes, leads to the formation of localized magnetohydrodynamic vortexes. Such an integrated convective regime generates an increase of the bioelectrocatalytic current and its concomitant power output in the presence of the external magnetic field. In addition, by fine-tuning the spatial arrangement of the anode and cathode, it is possible to benefit from the sum of anodic and cathodic MHD vortexes, leading to an enhanced power output of up to 300%.</p>\",\"PeriodicalId\":144,\"journal\":{\"name\":\"Chemistry - A European Journal\",\"volume\":\" \",\"pages\":\"e202403329\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry - A European Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/chem.202403329\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - A European Journal","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/chem.202403329","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Magnetohydrodynamic Enhancement of Biofuel Cell Performance.
Biofuel cells have become an interesting alternative for the design of sustainable energy conversion systems with multiple applications ranging from biosensing and bioelectronics to autonomously moving devices. However, as an electrochemical system, their performance is intimately related to mass transport conditions. In this work, the magnetohydrodynamic (MHD) effect is studied as an easy and straightforward alternative to enhance the performance of a biofuel cell based on the enzymes glucose oxidase (GOx) and bilirubin oxidase (BOD). The synergetic effect between the electric and ionic currents, produced by the enzymatic redox reactions, and a magnetic field orthogonal to the surface of the electrodes, leads to the formation of localized magnetohydrodynamic vortexes. Such an integrated convective regime generates an increase of the bioelectrocatalytic current and its concomitant power output in the presence of the external magnetic field. In addition, by fine-tuning the spatial arrangement of the anode and cathode, it is possible to benefit from the sum of anodic and cathodic MHD vortexes, leading to an enhanced power output of up to 300%.
期刊介绍:
Chemistry—A European Journal is a truly international journal with top quality contributions (2018 ISI Impact Factor: 5.16). It publishes a wide range of outstanding Reviews, Minireviews, Concepts, Full Papers, and Communications from all areas of chemistry and related fields.
Based in Europe Chemistry—A European Journal provides an excellent platform for increasing the visibility of European chemistry as well as for featuring the best research from authors from around the world.
All manuscripts are peer-reviewed, and electronic processing ensures accurate reproduction of text and data, plus short publication times.
The Concepts section provides nonspecialist readers with a useful conceptual guide to unfamiliar areas and experts with new angles on familiar problems.
Chemistry—A European Journal is published on behalf of ChemPubSoc Europe, a group of 16 national chemical societies from within Europe, and supported by the Asian Chemical Editorial Societies. The ChemPubSoc Europe family comprises: Angewandte Chemie, Chemistry—A European Journal, European Journal of Organic Chemistry, European Journal of Inorganic Chemistry, ChemPhysChem, ChemBioChem, ChemMedChem, ChemCatChem, ChemSusChem, ChemPlusChem, ChemElectroChem, and ChemistryOpen.