设计异质界面以协同调节硒化铜钴的动力学和应力,从而实现可逆的镁/锂混合电池。

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Wenlong Wang, Miao Tian, Zhitao Wang, Heping Ma, Yibo Du, Wenhui Si, Wenming Zhang, Hui Ying Yang, Song Chen
{"title":"设计异质界面以协同调节硒化铜钴的动力学和应力,从而实现可逆的镁/锂混合电池。","authors":"Wenlong Wang, Miao Tian, Zhitao Wang, Heping Ma, Yibo Du, Wenhui Si, Wenming Zhang, Hui Ying Yang, Song Chen","doi":"10.1021/acs.nanolett.4c04123","DOIUrl":null,"url":null,"abstract":"<p><p>Metal chalcogenide-based cathodes are crucial for the development of rechargeable magnesium batteries, yet the strong electrostatic interactions of Mg<sup>2</sup><sup>+</sup> result in slow ion transport and high polarization. The Mg<sup>2</sup><sup>+</sup>/Li<sup>+</sup> hybrid battery holds promise for enhancing the energy storage capability. Herein, we establish a system that utilizes (Co,Cu)Se<sub>2</sub>/CoSe<sub><i>x</i></sub> heterostructure grown on carbon cloth as the cathode and APC-LiCl as a dual-salt electrolyte to achieve high reversible capacity, enhanced cyclic stability, and impressive rate performance. First-principles calculations and kinetic analyses are employed to uncover that constructing the heterointerface stimulates the formation of an intrinsic electric field and high-density electron flows, thereby accelerating charge transfer and ion diffusion processes. Finite element simulations further demonstrate that the heterostructure effectively alleviates stresses associated with magnesiation/lithiation to enhance the structural integrity of the material. Moreover, the multistep reaction unveils a stepwise structural transformation pathway. This study initiates a new chapter in designing heterointerface strategies for advanced energy storage devices.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":" ","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering Heterointerface to Synergistically Regulate Kinetics and Stress of Copper-Cobalt Selenide toward Reversible Magnesium/Lithium Hybrid Batteries.\",\"authors\":\"Wenlong Wang, Miao Tian, Zhitao Wang, Heping Ma, Yibo Du, Wenhui Si, Wenming Zhang, Hui Ying Yang, Song Chen\",\"doi\":\"10.1021/acs.nanolett.4c04123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metal chalcogenide-based cathodes are crucial for the development of rechargeable magnesium batteries, yet the strong electrostatic interactions of Mg<sup>2</sup><sup>+</sup> result in slow ion transport and high polarization. The Mg<sup>2</sup><sup>+</sup>/Li<sup>+</sup> hybrid battery holds promise for enhancing the energy storage capability. Herein, we establish a system that utilizes (Co,Cu)Se<sub>2</sub>/CoSe<sub><i>x</i></sub> heterostructure grown on carbon cloth as the cathode and APC-LiCl as a dual-salt electrolyte to achieve high reversible capacity, enhanced cyclic stability, and impressive rate performance. First-principles calculations and kinetic analyses are employed to uncover that constructing the heterointerface stimulates the formation of an intrinsic electric field and high-density electron flows, thereby accelerating charge transfer and ion diffusion processes. Finite element simulations further demonstrate that the heterostructure effectively alleviates stresses associated with magnesiation/lithiation to enhance the structural integrity of the material. Moreover, the multistep reaction unveils a stepwise structural transformation pathway. This study initiates a new chapter in designing heterointerface strategies for advanced energy storage devices.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c04123\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c04123","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

基于金属卤化物的阴极对于开发可充电镁电池至关重要,但 Mg2+ 的强静电相互作用导致离子传输缓慢和极化严重。Mg2+/Li+ 混合电池有望提高能量存储能力。在此,我们建立了一个系统,利用生长在碳布上的(Co,Cu)Se2/CoSex 异质结构作为阴极,并利用 APC-LiCl 作为双盐电解质,从而实现了高可逆容量、更强的循环稳定性和令人印象深刻的速率性能。通过第一性原理计算和动力学分析,我们发现异质表面的构建会刺激本征电场和高密度电子流的形成,从而加速电荷转移和离子扩散过程。有限元模拟进一步证明,异质结构能有效缓解与镁化/石灰化相关的应力,从而增强材料的结构完整性。此外,多步反应揭示了一种逐步的结构转变途径。这项研究开启了为先进储能设备设计异质界面策略的新篇章。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Engineering Heterointerface to Synergistically Regulate Kinetics and Stress of Copper-Cobalt Selenide toward Reversible Magnesium/Lithium Hybrid Batteries.

Engineering Heterointerface to Synergistically Regulate Kinetics and Stress of Copper-Cobalt Selenide toward Reversible Magnesium/Lithium Hybrid Batteries.

Metal chalcogenide-based cathodes are crucial for the development of rechargeable magnesium batteries, yet the strong electrostatic interactions of Mg2+ result in slow ion transport and high polarization. The Mg2+/Li+ hybrid battery holds promise for enhancing the energy storage capability. Herein, we establish a system that utilizes (Co,Cu)Se2/CoSex heterostructure grown on carbon cloth as the cathode and APC-LiCl as a dual-salt electrolyte to achieve high reversible capacity, enhanced cyclic stability, and impressive rate performance. First-principles calculations and kinetic analyses are employed to uncover that constructing the heterointerface stimulates the formation of an intrinsic electric field and high-density electron flows, thereby accelerating charge transfer and ion diffusion processes. Finite element simulations further demonstrate that the heterostructure effectively alleviates stresses associated with magnesiation/lithiation to enhance the structural integrity of the material. Moreover, the multistep reaction unveils a stepwise structural transformation pathway. This study initiates a new chapter in designing heterointerface strategies for advanced energy storage devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信