{"title":"抗菌肽 Tachyplesin III 在调节非类型流感嗜血杆菌诱导的气道上皮细胞炎症中的潜在作用。","authors":"Pornpimon Jantaruk, Sittiruk Roytrakul, Anchalee Sistayanarain, Duangkamol Kunthalert","doi":"10.1007/s00203-024-04196-w","DOIUrl":null,"url":null,"abstract":"<div><p>The respiratory bacterium nontypeable (non-encapsulated) <i>Haemophilus influenzae</i> (NTHi) is a key pathogen driving exacerbations in chronic obstructive pulmonary disease (COPD), and is associated with an excessive airway inflammation. Increasing issues with tolerance and unwanted side effects of existing pharmaceuticals present an urgent need for new, effective and minimally toxic therapeutic options. This study aimed to investigate the potential role of Tachyplesin III, an antimicrobial peptide derived from the hemolysates of Southeast Asian horseshoe crabs, in regulating NTHi-induced airway inflammation. The results revealed that Tachyplesin III effectively inhibited the production of IL-1β in NTHi-stimulated human lung epithelial cells (A549), without causing cytotoxic effects. Additionally, Tachyplesin III significantly reduced TNF-α, PGE<sub>2</sub> and NO production in NTHi-stimulated A549 cells. Moreover, this peptide inhibited the nuclear translocation of the NF-κB p65 subunit in NTHi-stimulated lung epithelial cells. It also reduced transcriptional activation of NF-κB target genes, as shown by lower mRNA levels of IL-1β, TNF-α, COX-2 and iNOS, which correlated with corresponding decreases in their protein expression. Tachyplesin III peptide also inhibited pro-IL-1β and NLRP3 protein expression and prevented NTHi-induced caspase-1 cleavage and IL-1β maturation. Together, our findings demonstrate that Tachyplesin III effectively reduced NTHi-mediated inflammation via the NF-κB/NLRP3 inflammasome signaling pathway, highlighting its important anti-inflammatory activity. Complementing these findings, in silico analysis revealed key pharmacokinetic and toxicological attributes, establishing a foundational understanding of Tachyplesin III as a promising therapeutic agent for managing NTHi-associated inflammation.</p></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":"206 12","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potential role of the antimicrobial peptide Tachyplesin III in regulating nontypeable Haemophilus influenzae-induced inflammation in airway epithelial cells\",\"authors\":\"Pornpimon Jantaruk, Sittiruk Roytrakul, Anchalee Sistayanarain, Duangkamol Kunthalert\",\"doi\":\"10.1007/s00203-024-04196-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The respiratory bacterium nontypeable (non-encapsulated) <i>Haemophilus influenzae</i> (NTHi) is a key pathogen driving exacerbations in chronic obstructive pulmonary disease (COPD), and is associated with an excessive airway inflammation. Increasing issues with tolerance and unwanted side effects of existing pharmaceuticals present an urgent need for new, effective and minimally toxic therapeutic options. This study aimed to investigate the potential role of Tachyplesin III, an antimicrobial peptide derived from the hemolysates of Southeast Asian horseshoe crabs, in regulating NTHi-induced airway inflammation. The results revealed that Tachyplesin III effectively inhibited the production of IL-1β in NTHi-stimulated human lung epithelial cells (A549), without causing cytotoxic effects. Additionally, Tachyplesin III significantly reduced TNF-α, PGE<sub>2</sub> and NO production in NTHi-stimulated A549 cells. Moreover, this peptide inhibited the nuclear translocation of the NF-κB p65 subunit in NTHi-stimulated lung epithelial cells. It also reduced transcriptional activation of NF-κB target genes, as shown by lower mRNA levels of IL-1β, TNF-α, COX-2 and iNOS, which correlated with corresponding decreases in their protein expression. Tachyplesin III peptide also inhibited pro-IL-1β and NLRP3 protein expression and prevented NTHi-induced caspase-1 cleavage and IL-1β maturation. Together, our findings demonstrate that Tachyplesin III effectively reduced NTHi-mediated inflammation via the NF-κB/NLRP3 inflammasome signaling pathway, highlighting its important anti-inflammatory activity. Complementing these findings, in silico analysis revealed key pharmacokinetic and toxicological attributes, establishing a foundational understanding of Tachyplesin III as a promising therapeutic agent for managing NTHi-associated inflammation.</p></div>\",\"PeriodicalId\":8279,\"journal\":{\"name\":\"Archives of Microbiology\",\"volume\":\"206 12\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00203-024-04196-w\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s00203-024-04196-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
呼吸道细菌非类型(无包囊)流感嗜血杆菌(NTHi)是导致慢性阻塞性肺病(COPD)病情恶化的主要病原体,并与过度的气道炎症有关。现有药物的耐受性和不良副作用问题日益严重,因此迫切需要新的、有效的、毒性最小的治疗方案。本研究旨在探讨从东南亚鲎溶血产物中提取的抗菌肽 Tachyplesin III 在调节 NTHi 诱导的气道炎症中的潜在作用。研究结果表明,Tachyplesin III 能有效抑制 NTHi 刺激的人肺上皮细胞(A549)产生 IL-1β,且不产生细胞毒性作用。此外,Tachyplesin III 还能显著减少 NTHi-stimulated A549 细胞中 TNF-α、PGE2 和 NO 的产生。此外,该肽还能抑制 NTHi 刺激的肺上皮细胞中 NF-κB p65 亚基的核转位。它还能减少 NF-κB 靶基因的转录激活,这表现在 IL-1β、TNF-α、COX-2 和 iNOS 的 mRNA 水平降低,而它们的蛋白质表达也相应减少。Tachyplesin III 多肽还能抑制前 IL-1β 和 NLRP3 蛋白的表达,防止 NTHi 诱导的 Caspase-1 裂解和 IL-1β 成熟。总之,我们的研究结果表明,Tachyplesin III 可通过 NF-κB/NLRP3 炎性体信号通路有效减少 NTHi 介导的炎症,突显了其重要的抗炎活性。与这些研究结果相辅相成的是,硅学分析揭示了关键的药代动力学和毒理学特性,从而建立了对 Tachyplesin III 的基础认识,使其成为一种有希望控制 NTHi- 相关炎症的治疗药物。
Potential role of the antimicrobial peptide Tachyplesin III in regulating nontypeable Haemophilus influenzae-induced inflammation in airway epithelial cells
The respiratory bacterium nontypeable (non-encapsulated) Haemophilus influenzae (NTHi) is a key pathogen driving exacerbations in chronic obstructive pulmonary disease (COPD), and is associated with an excessive airway inflammation. Increasing issues with tolerance and unwanted side effects of existing pharmaceuticals present an urgent need for new, effective and minimally toxic therapeutic options. This study aimed to investigate the potential role of Tachyplesin III, an antimicrobial peptide derived from the hemolysates of Southeast Asian horseshoe crabs, in regulating NTHi-induced airway inflammation. The results revealed that Tachyplesin III effectively inhibited the production of IL-1β in NTHi-stimulated human lung epithelial cells (A549), without causing cytotoxic effects. Additionally, Tachyplesin III significantly reduced TNF-α, PGE2 and NO production in NTHi-stimulated A549 cells. Moreover, this peptide inhibited the nuclear translocation of the NF-κB p65 subunit in NTHi-stimulated lung epithelial cells. It also reduced transcriptional activation of NF-κB target genes, as shown by lower mRNA levels of IL-1β, TNF-α, COX-2 and iNOS, which correlated with corresponding decreases in their protein expression. Tachyplesin III peptide also inhibited pro-IL-1β and NLRP3 protein expression and prevented NTHi-induced caspase-1 cleavage and IL-1β maturation. Together, our findings demonstrate that Tachyplesin III effectively reduced NTHi-mediated inflammation via the NF-κB/NLRP3 inflammasome signaling pathway, highlighting its important anti-inflammatory activity. Complementing these findings, in silico analysis revealed key pharmacokinetic and toxicological attributes, establishing a foundational understanding of Tachyplesin III as a promising therapeutic agent for managing NTHi-associated inflammation.
期刊介绍:
Research papers must make a significant and original contribution to
microbiology and be of interest to a broad readership. The results of any
experimental approach that meets these objectives are welcome, particularly
biochemical, molecular genetic, physiological, and/or physical investigations into
microbial cells and their interactions with their environments, including their eukaryotic hosts.
Mini-reviews in areas of special topical interest and papers on medical microbiology, ecology and systematics, including description of novel taxa, are also published.
Theoretical papers and those that report on the analysis or ''mining'' of data are
acceptable in principle if new information, interpretations, or hypotheses
emerge.