磁性功能化镧系元素 MOF-on-MOF,用于超灵敏荧光免疫测定的等离子体差分信号放大。

IF 8.2 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Tianxiang Hang, Ciyang Zhang, Fubin Pei, Ming Yang, Fengyun Wang, Mingzhu Xia, Qingli Hao, Wu Lei
{"title":"磁性功能化镧系元素 MOF-on-MOF,用于超灵敏荧光免疫测定的等离子体差分信号放大。","authors":"Tianxiang Hang, Ciyang Zhang, Fubin Pei, Ming Yang, Fengyun Wang, Mingzhu Xia, Qingli Hao, Wu Lei","doi":"10.1021/acssensors.4c02505","DOIUrl":null,"url":null,"abstract":"<p><p>The successful application of fluorescence immunoassays for clinical diagnosis requires stable photoluminescent materials and highly efficient signal amplification strategies. In this work, the magnetism-functionalized lanthanide MOF-on-MOF (Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>@MOF-on-MOF) was synthesized through intermolecular (van der Waals) interaction-assisted growth and further homogeneous epitaxial growth, which significantly improved the fluorescence performances and uncovered the underlying mechanism. The quantum chemical theory calculation and experimental studies revealed that the introduced magnetic Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub> not only endowed magnetic separation capability but also promoted fluorescence performances, which increased the energy transfer of the intersystem crossing process and suppressed the luminescence of ligands and aggregation-induced quenching. Furthermore, the plasmonic Ag/Au nanocages were developed as highly efficient fluorescence quenchers to improve the sensitivity of the fluorescence immunoassay. On the basis of the proposed differential signal amplification (DSA) strategy, the immunoassay displayed superior detection ability, with a limit of detection of 0.13 pg·mL<sup>-1</sup> for severe acute respiratory syndrome coronavirus 2 nucleocapsid protein. The designed magnetic lanthanide MOF-on-MOF and proposed DSA strategy give new insights into ultrasensitive fluorescence immunoassays.</p>","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetism-Functionalized Lanthanide MOF-on-MOF with Plasmonic Differential Signal Amplification for Ultrasensitive Fluorescence Immunoassays.\",\"authors\":\"Tianxiang Hang, Ciyang Zhang, Fubin Pei, Ming Yang, Fengyun Wang, Mingzhu Xia, Qingli Hao, Wu Lei\",\"doi\":\"10.1021/acssensors.4c02505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The successful application of fluorescence immunoassays for clinical diagnosis requires stable photoluminescent materials and highly efficient signal amplification strategies. In this work, the magnetism-functionalized lanthanide MOF-on-MOF (Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>@MOF-on-MOF) was synthesized through intermolecular (van der Waals) interaction-assisted growth and further homogeneous epitaxial growth, which significantly improved the fluorescence performances and uncovered the underlying mechanism. The quantum chemical theory calculation and experimental studies revealed that the introduced magnetic Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub> not only endowed magnetic separation capability but also promoted fluorescence performances, which increased the energy transfer of the intersystem crossing process and suppressed the luminescence of ligands and aggregation-induced quenching. Furthermore, the plasmonic Ag/Au nanocages were developed as highly efficient fluorescence quenchers to improve the sensitivity of the fluorescence immunoassay. On the basis of the proposed differential signal amplification (DSA) strategy, the immunoassay displayed superior detection ability, with a limit of detection of 0.13 pg·mL<sup>-1</sup> for severe acute respiratory syndrome coronavirus 2 nucleocapsid protein. The designed magnetic lanthanide MOF-on-MOF and proposed DSA strategy give new insights into ultrasensitive fluorescence immunoassays.</p>\",\"PeriodicalId\":24,\"journal\":{\"name\":\"ACS Sensors\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sensors\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acssensors.4c02505\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.4c02505","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

将荧光免疫测定成功应用于临床诊断需要稳定的光致发光材料和高效的信号放大策略。本研究通过分子间(范德华)相互作用辅助生长和进一步均匀外延生长合成了磁功能化镧系MOF-on-MOF(Fe3O4@SiO2@MOF-on-MOF),显著提高了荧光性能,并揭示了其潜在机理。量子化学理论计算和实验研究表明,引入的磁性 Fe3O4@SiO2 不仅具有磁分离能力,还能促进荧光性能,增加了体系间交叉过程的能量传递,抑制了配体发光和聚集诱导的淬灭。此外,电浆银/金纳米笼还被开发为高效荧光淬灭剂,以提高荧光免疫测定的灵敏度。在所提出的差分信号放大(DSA)策略的基础上,该免疫分析法显示出卓越的检测能力,对严重急性呼吸系统综合征冠状病毒 2 核头壳蛋白的检测限为 0.13 pg-mL-1。所设计的磁性镧系MOF-on-MOF和所提出的DSA策略为超灵敏荧光免疫测定提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Magnetism-Functionalized Lanthanide MOF-on-MOF with Plasmonic Differential Signal Amplification for Ultrasensitive Fluorescence Immunoassays.

Magnetism-Functionalized Lanthanide MOF-on-MOF with Plasmonic Differential Signal Amplification for Ultrasensitive Fluorescence Immunoassays.

The successful application of fluorescence immunoassays for clinical diagnosis requires stable photoluminescent materials and highly efficient signal amplification strategies. In this work, the magnetism-functionalized lanthanide MOF-on-MOF (Fe3O4@SiO2@MOF-on-MOF) was synthesized through intermolecular (van der Waals) interaction-assisted growth and further homogeneous epitaxial growth, which significantly improved the fluorescence performances and uncovered the underlying mechanism. The quantum chemical theory calculation and experimental studies revealed that the introduced magnetic Fe3O4@SiO2 not only endowed magnetic separation capability but also promoted fluorescence performances, which increased the energy transfer of the intersystem crossing process and suppressed the luminescence of ligands and aggregation-induced quenching. Furthermore, the plasmonic Ag/Au nanocages were developed as highly efficient fluorescence quenchers to improve the sensitivity of the fluorescence immunoassay. On the basis of the proposed differential signal amplification (DSA) strategy, the immunoassay displayed superior detection ability, with a limit of detection of 0.13 pg·mL-1 for severe acute respiratory syndrome coronavirus 2 nucleocapsid protein. The designed magnetic lanthanide MOF-on-MOF and proposed DSA strategy give new insights into ultrasensitive fluorescence immunoassays.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Sensors
ACS Sensors Chemical Engineering-Bioengineering
CiteScore
14.50
自引率
3.40%
发文量
372
期刊介绍: ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信