{"title":"三种新型二甲基二硫降解菌及其潜在降解途径的特征。","authors":"Xianyun Zheng, Yuyu Li, JingChao Xu, Quanxi Zhang, Yuexia Zhang","doi":"10.1016/j.biortech.2024.131833","DOIUrl":null,"url":null,"abstract":"<p><p>Dimethyl disulfide (DMDS) is an odor compound characterized by the lowest olfactory threshold and high toxicity. It is indispensable to explore the bacteria with high resistance and degradation efficiency to DMDS. Acinetobacter lwoffii, Pseudomonas mendocina, and Myroides odoratus were isolated from kitchen waste. After 6 days of individual treatment, the removal rates were 34.22 %, 40.95 %, and 41.94 % respectively. The DMDS metabolic pathways based on metagenomic assays were discovered to be incomplete due to the insufficient annotation of some key genes in the current database. Following 3 days of treatment with bacterial consortia at ratios of 5:1 for A. lwoffii C2/ M. odoratus C7 and 1:1:1 for the three strains achieved 100 % DMDS removal. Additionally, the consortia reduced hydrogen sulfide (H<sub>2</sub>S) and dimethyl sulfide (DMS).This discovery broadens the spectrum of bacteria exhibiting high tolerance and efficient degradation of DMDS, with significant implications for DMDS removal and odor treatment.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"131833"},"PeriodicalIF":9.7000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of three novel dimethyl disulfide degrading bacteria and their potential degradation pathways.\",\"authors\":\"Xianyun Zheng, Yuyu Li, JingChao Xu, Quanxi Zhang, Yuexia Zhang\",\"doi\":\"10.1016/j.biortech.2024.131833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dimethyl disulfide (DMDS) is an odor compound characterized by the lowest olfactory threshold and high toxicity. It is indispensable to explore the bacteria with high resistance and degradation efficiency to DMDS. Acinetobacter lwoffii, Pseudomonas mendocina, and Myroides odoratus were isolated from kitchen waste. After 6 days of individual treatment, the removal rates were 34.22 %, 40.95 %, and 41.94 % respectively. The DMDS metabolic pathways based on metagenomic assays were discovered to be incomplete due to the insufficient annotation of some key genes in the current database. Following 3 days of treatment with bacterial consortia at ratios of 5:1 for A. lwoffii C2/ M. odoratus C7 and 1:1:1 for the three strains achieved 100 % DMDS removal. Additionally, the consortia reduced hydrogen sulfide (H<sub>2</sub>S) and dimethyl sulfide (DMS).This discovery broadens the spectrum of bacteria exhibiting high tolerance and efficient degradation of DMDS, with significant implications for DMDS removal and odor treatment.</p>\",\"PeriodicalId\":258,\"journal\":{\"name\":\"Bioresource Technology\",\"volume\":\" \",\"pages\":\"131833\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresource Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.biortech.2024.131833\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2024.131833","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
Characterization of three novel dimethyl disulfide degrading bacteria and their potential degradation pathways.
Dimethyl disulfide (DMDS) is an odor compound characterized by the lowest olfactory threshold and high toxicity. It is indispensable to explore the bacteria with high resistance and degradation efficiency to DMDS. Acinetobacter lwoffii, Pseudomonas mendocina, and Myroides odoratus were isolated from kitchen waste. After 6 days of individual treatment, the removal rates were 34.22 %, 40.95 %, and 41.94 % respectively. The DMDS metabolic pathways based on metagenomic assays were discovered to be incomplete due to the insufficient annotation of some key genes in the current database. Following 3 days of treatment with bacterial consortia at ratios of 5:1 for A. lwoffii C2/ M. odoratus C7 and 1:1:1 for the three strains achieved 100 % DMDS removal. Additionally, the consortia reduced hydrogen sulfide (H2S) and dimethyl sulfide (DMS).This discovery broadens the spectrum of bacteria exhibiting high tolerance and efficient degradation of DMDS, with significant implications for DMDS removal and odor treatment.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.