设计具有分散碳颗粒的二氧化硅-钴复合微孔结构,用于高选择性气体分离膜。

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
ACS Applied Materials & Interfaces Pub Date : 2024-11-27 Epub Date: 2024-11-18 DOI:10.1021/acsami.4c15378
Kento Soma, Norihiro Moriyama, Hiroki Nagasawa, Toshinori Tsuru, Masakoto Kanezashi
{"title":"设计具有分散碳颗粒的二氧化硅-钴复合微孔结构,用于高选择性气体分离膜。","authors":"Kento Soma, Norihiro Moriyama, Hiroki Nagasawa, Toshinori Tsuru, Masakoto Kanezashi","doi":"10.1021/acsami.4c15378","DOIUrl":null,"url":null,"abstract":"<p><p>Metal-doped silica membranes, fabricated via the sol-gel technique using metal nitrates, hold promise for high-temperature separation processes, such as H<sub>2</sub> separation in steam reforming reactions. However, controlling the status of the doped metal is challenging and often leads to defect formation owing to the aggregation of metal oxides. In this study, we designed a uniform carbon-Co-SiO<sub>2</sub> ceramic membrane using a one-pot sol-gel method with copolymerization, employing tetraethoxysilane and cobalt acetylacetone(III) (Co-(acac)<sub>3</sub>) as precursors. Organic chelate ligands within the amorphous silica network formed by the polymerization reaction were carbonized by calcination at 250-750 °C in an inert atmosphere. This approach suppressed defect formation and tailored the microporous structures to a wide range of separation systems. For example, the SiO<sub>2</sub>-Co-(acac)<sub>3</sub> membrane calcined at 550 °C demonstrated a notable C<sub>3</sub>H<sub>6</sub> permeance of 4.0 × 10<sup>-8</sup> mol m<sup>-2</sup> s<sup>-1</sup> Pa<sup>-1</sup> (GPU: 120), with a high C<sub>3</sub>H<sub>6</sub>/C<sub>3</sub>H<sub>8</sub> selectivity of 46, attributed to the molecular sieving effect, whereas the membrane calcined at 650 °C exhibited a remarkable He permeance of 4.6 × 10<sup>-7</sup> mol m<sup>-2</sup> s<sup>-1</sup> Pa<sup>-1</sup> (GPU: 1400), with a high He/CH<sub>4</sub> selectivity of 830. This study provides valuable insights into the development of defect-free carbon-cation-SiO<sub>2</sub> ceramic membranes for a broad range of gas separation processes.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"65233-65244"},"PeriodicalIF":8.2000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of Silica-Cobalt Composite Microporous Structures with Dispersed Carbon Particles for Highly Permselective Gas Separation Membranes.\",\"authors\":\"Kento Soma, Norihiro Moriyama, Hiroki Nagasawa, Toshinori Tsuru, Masakoto Kanezashi\",\"doi\":\"10.1021/acsami.4c15378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metal-doped silica membranes, fabricated via the sol-gel technique using metal nitrates, hold promise for high-temperature separation processes, such as H<sub>2</sub> separation in steam reforming reactions. However, controlling the status of the doped metal is challenging and often leads to defect formation owing to the aggregation of metal oxides. In this study, we designed a uniform carbon-Co-SiO<sub>2</sub> ceramic membrane using a one-pot sol-gel method with copolymerization, employing tetraethoxysilane and cobalt acetylacetone(III) (Co-(acac)<sub>3</sub>) as precursors. Organic chelate ligands within the amorphous silica network formed by the polymerization reaction were carbonized by calcination at 250-750 °C in an inert atmosphere. This approach suppressed defect formation and tailored the microporous structures to a wide range of separation systems. For example, the SiO<sub>2</sub>-Co-(acac)<sub>3</sub> membrane calcined at 550 °C demonstrated a notable C<sub>3</sub>H<sub>6</sub> permeance of 4.0 × 10<sup>-8</sup> mol m<sup>-2</sup> s<sup>-1</sup> Pa<sup>-1</sup> (GPU: 120), with a high C<sub>3</sub>H<sub>6</sub>/C<sub>3</sub>H<sub>8</sub> selectivity of 46, attributed to the molecular sieving effect, whereas the membrane calcined at 650 °C exhibited a remarkable He permeance of 4.6 × 10<sup>-7</sup> mol m<sup>-2</sup> s<sup>-1</sup> Pa<sup>-1</sup> (GPU: 1400), with a high He/CH<sub>4</sub> selectivity of 830. This study provides valuable insights into the development of defect-free carbon-cation-SiO<sub>2</sub> ceramic membranes for a broad range of gas separation processes.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\" \",\"pages\":\"65233-65244\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c15378\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c15378","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利用金属硝酸盐通过溶胶-凝胶技术制造的金属掺杂二氧化硅膜有望用于高温分离过程,如蒸汽重整反应中的 H2 分离。然而,控制掺杂金属的状态具有挑战性,而且往往会因金属氧化物的聚集而导致缺陷的形成。在本研究中,我们以四乙氧基硅烷和乙酰丙酮钴(III)(Co-(acac)3)为前驱体,采用共聚一锅溶胶-凝胶法设计了一种均匀的碳-Co-SiO2 陶瓷膜。聚合反应形成的无定形二氧化硅网络中的有机螯合配体在 250-750 °C 的惰性气氛中煅烧碳化。这种方法抑制了缺陷的形成,使微孔结构适用于多种分离系统。例如,SiO2-Co-(acac)3 膜在 550 °C 煅烧后,C3H6 的渗透率达到 4.0 × 10-8 mol m-2 s-1 Pa-1 (GPU:120),C3H6/C3H8 的选择性高达 46,这归功于分子筛分效应;而在 650 °C 煅烧的膜,He 的渗透率达到 4.6 × 10-7 mol m-2 s-1 Pa-1 (GPU:1400),He/CH4 的选择性高达 830。这项研究为开发适用于各种气体分离过程的无缺陷碳阳离子-二氧化硅陶瓷膜提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Design of Silica-Cobalt Composite Microporous Structures with Dispersed Carbon Particles for Highly Permselective Gas Separation Membranes.

Design of Silica-Cobalt Composite Microporous Structures with Dispersed Carbon Particles for Highly Permselective Gas Separation Membranes.

Metal-doped silica membranes, fabricated via the sol-gel technique using metal nitrates, hold promise for high-temperature separation processes, such as H2 separation in steam reforming reactions. However, controlling the status of the doped metal is challenging and often leads to defect formation owing to the aggregation of metal oxides. In this study, we designed a uniform carbon-Co-SiO2 ceramic membrane using a one-pot sol-gel method with copolymerization, employing tetraethoxysilane and cobalt acetylacetone(III) (Co-(acac)3) as precursors. Organic chelate ligands within the amorphous silica network formed by the polymerization reaction were carbonized by calcination at 250-750 °C in an inert atmosphere. This approach suppressed defect formation and tailored the microporous structures to a wide range of separation systems. For example, the SiO2-Co-(acac)3 membrane calcined at 550 °C demonstrated a notable C3H6 permeance of 4.0 × 10-8 mol m-2 s-1 Pa-1 (GPU: 120), with a high C3H6/C3H8 selectivity of 46, attributed to the molecular sieving effect, whereas the membrane calcined at 650 °C exhibited a remarkable He permeance of 4.6 × 10-7 mol m-2 s-1 Pa-1 (GPU: 1400), with a high He/CH4 selectivity of 830. This study provides valuable insights into the development of defect-free carbon-cation-SiO2 ceramic membranes for a broad range of gas separation processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信