Mohsen Habibnia, Eric Catalina-Hernandez, Mario Lopez-Martin, David Masnou-Sanchez, Alex Peralvarez-Marin
{"title":"解码淀粉样蛋白级联途径中神经激肽 A 和 Aβ1-42 肽交叉相互作用的分子和结构决定因素。","authors":"Mohsen Habibnia, Eric Catalina-Hernandez, Mario Lopez-Martin, David Masnou-Sanchez, Alex Peralvarez-Marin","doi":"10.1016/j.isci.2024.111187","DOIUrl":null,"url":null,"abstract":"<p><p>Tachykinins are short neuropeptides, such as substance P and neurokinin B, that have been shown to interact with Alzheimer's β-amyloid (Aβ) peptide. Neurokinin A (NKA) is a secreted tachykinin neuropeptide that binds to neurokinin receptors and with an emerging role in the brain-gut axis. NKA shares the brain niche with Aβ; thus, we investigate whether and how NKA and Aβ peptide interact. We have used a combination of computational and experimental biophysics to assess the interaction of both peptides <i>in vitro</i>. Using Phe-to-Trp substitution, we have shown that Phe in the FXGLM signature in NKA is important for such interaction and for the modulation of the Aβ peptide amyloid cascade. Besides, cellular experiments have shown that the NKA-Aβ interaction decreases the Aβ peptide toxicity. Altogether, our work raises the intriguing possibility that NKA balance and the NKA-Aβ peptide interplay are relevant in the aggregation process in Alzheimer's disease.</p>","PeriodicalId":342,"journal":{"name":"iScience","volume":"27 11","pages":"111187"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570453/pdf/","citationCount":"0","resultStr":"{\"title\":\"Decoding the molecular and structural determinants of the neurokinin A and Aβ<sub>1-42</sub> peptide cross-interaction in the amyloid cascade pathway.\",\"authors\":\"Mohsen Habibnia, Eric Catalina-Hernandez, Mario Lopez-Martin, David Masnou-Sanchez, Alex Peralvarez-Marin\",\"doi\":\"10.1016/j.isci.2024.111187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tachykinins are short neuropeptides, such as substance P and neurokinin B, that have been shown to interact with Alzheimer's β-amyloid (Aβ) peptide. Neurokinin A (NKA) is a secreted tachykinin neuropeptide that binds to neurokinin receptors and with an emerging role in the brain-gut axis. NKA shares the brain niche with Aβ; thus, we investigate whether and how NKA and Aβ peptide interact. We have used a combination of computational and experimental biophysics to assess the interaction of both peptides <i>in vitro</i>. Using Phe-to-Trp substitution, we have shown that Phe in the FXGLM signature in NKA is important for such interaction and for the modulation of the Aβ peptide amyloid cascade. Besides, cellular experiments have shown that the NKA-Aβ interaction decreases the Aβ peptide toxicity. Altogether, our work raises the intriguing possibility that NKA balance and the NKA-Aβ peptide interplay are relevant in the aggregation process in Alzheimer's disease.</p>\",\"PeriodicalId\":342,\"journal\":{\"name\":\"iScience\",\"volume\":\"27 11\",\"pages\":\"111187\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570453/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"iScience\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1016/j.isci.2024.111187\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/15 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"iScience","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.isci.2024.111187","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/15 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Decoding the molecular and structural determinants of the neurokinin A and Aβ1-42 peptide cross-interaction in the amyloid cascade pathway.
Tachykinins are short neuropeptides, such as substance P and neurokinin B, that have been shown to interact with Alzheimer's β-amyloid (Aβ) peptide. Neurokinin A (NKA) is a secreted tachykinin neuropeptide that binds to neurokinin receptors and with an emerging role in the brain-gut axis. NKA shares the brain niche with Aβ; thus, we investigate whether and how NKA and Aβ peptide interact. We have used a combination of computational and experimental biophysics to assess the interaction of both peptides in vitro. Using Phe-to-Trp substitution, we have shown that Phe in the FXGLM signature in NKA is important for such interaction and for the modulation of the Aβ peptide amyloid cascade. Besides, cellular experiments have shown that the NKA-Aβ interaction decreases the Aβ peptide toxicity. Altogether, our work raises the intriguing possibility that NKA balance and the NKA-Aβ peptide interplay are relevant in the aggregation process in Alzheimer's disease.
期刊介绍:
Science has many big remaining questions. To address them, we will need to work collaboratively and across disciplines. The goal of iScience is to help fuel that type of interdisciplinary thinking. iScience is a new open-access journal from Cell Press that provides a platform for original research in the life, physical, and earth sciences. The primary criterion for publication in iScience is a significant contribution to a relevant field combined with robust results and underlying methodology. The advances appearing in iScience include both fundamental and applied investigations across this interdisciplinary range of topic areas. To support transparency in scientific investigation, we are happy to consider replication studies and papers that describe negative results.
We know you want your work to be published quickly and to be widely visible within your community and beyond. With the strong international reputation of Cell Press behind it, publication in iScience will help your work garner the attention and recognition it merits. Like all Cell Press journals, iScience prioritizes rapid publication. Our editorial team pays special attention to high-quality author service and to efficient, clear-cut decisions based on the information available within the manuscript. iScience taps into the expertise across Cell Press journals and selected partners to inform our editorial decisions and help publish your science in a timely and seamless way.