用于水性电化学设备的拓扑网络水凝胶中的封闭水动力学。

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2024-11-18 DOI:10.1002/smll.202408819
Huanrong Zhang, Tianlai Xia, Ruoqi Chen, Lijiaqi Zhang, Xusheng Wang, Hui Ma, Yuqiao Chai, Zijing Ren, Junhui Ji, Xinlei Ma, Min Wu, Mianqi Xue
{"title":"用于水性电化学设备的拓扑网络水凝胶中的封闭水动力学。","authors":"Huanrong Zhang, Tianlai Xia, Ruoqi Chen, Lijiaqi Zhang, Xusheng Wang, Hui Ma, Yuqiao Chai, Zijing Ren, Junhui Ji, Xinlei Ma, Min Wu, Mianqi Xue","doi":"10.1002/smll.202408819","DOIUrl":null,"url":null,"abstract":"<p><p>The unique properties of confined water molecules within polymer networks have garnered extensive research interest in energy storage, catalysis, and sensing. Confined water molecules exhibit higher thermodynamic stability compared to free water, which reduces decomposition and evaporation of water in hydrogel electrolyte system. Herein, a facile strategy is developed to limit active water molecules in a hydrogel network via hydrogen bonding within a topological network. The design of this gel enhances hydrogen bonding between the gel network and water molecules, thereby improving stability by constructing interpenetrating networks. Using this design, the topological network gel is selected as the electrolyte for batteries, demonstrating an extended electrochemical window from 2.37 V with polyvinyl alcohol gel to 2.96 V, indicating superior confinement of water molecules by hydrogen bonds in the topological network. Additionally, batteries and capacitors assembled with the topological gel exhibit high-capacity retention rates of 94.25% after 20 000 cycles at a current density of 1.0 A g<sup>-1</sup> and 87.63% after 10 000 cycles at a current density of 0.5 A g<sup>-1</sup>, respectively. This study demonstrates the feasibility of using a topological gel design to enhance gel electrolyte stability, offering a promising avenue for future research in regulating topological networks within gels for various applications.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":" ","pages":"e2408819"},"PeriodicalIF":13.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Confined Water Dynamics in Topological Networks Hydrogel for Aqueous Electrochemical Devices.\",\"authors\":\"Huanrong Zhang, Tianlai Xia, Ruoqi Chen, Lijiaqi Zhang, Xusheng Wang, Hui Ma, Yuqiao Chai, Zijing Ren, Junhui Ji, Xinlei Ma, Min Wu, Mianqi Xue\",\"doi\":\"10.1002/smll.202408819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The unique properties of confined water molecules within polymer networks have garnered extensive research interest in energy storage, catalysis, and sensing. Confined water molecules exhibit higher thermodynamic stability compared to free water, which reduces decomposition and evaporation of water in hydrogel electrolyte system. Herein, a facile strategy is developed to limit active water molecules in a hydrogel network via hydrogen bonding within a topological network. The design of this gel enhances hydrogen bonding between the gel network and water molecules, thereby improving stability by constructing interpenetrating networks. Using this design, the topological network gel is selected as the electrolyte for batteries, demonstrating an extended electrochemical window from 2.37 V with polyvinyl alcohol gel to 2.96 V, indicating superior confinement of water molecules by hydrogen bonds in the topological network. Additionally, batteries and capacitors assembled with the topological gel exhibit high-capacity retention rates of 94.25% after 20 000 cycles at a current density of 1.0 A g<sup>-1</sup> and 87.63% after 10 000 cycles at a current density of 0.5 A g<sup>-1</sup>, respectively. This study demonstrates the feasibility of using a topological gel design to enhance gel electrolyte stability, offering a promising avenue for future research in regulating topological networks within gels for various applications.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\" \",\"pages\":\"e2408819\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202408819\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202408819","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

密闭水分子在聚合物网络中的独特性质在能量存储、催化和传感领域引起了广泛的研究兴趣。与自由水相比,封闭水分子表现出更高的热力学稳定性,从而减少了水凝胶电解质系统中水的分解和蒸发。本文开发了一种简便的策略,通过拓扑网络中的氢键将活性水分子限制在水凝胶网络中。这种凝胶的设计增强了凝胶网络与水分子之间的氢键结合,从而通过构建相互渗透的网络提高了稳定性。利用这种设计,拓扑网络凝胶被选为电池的电解质,其电化学窗口从聚乙烯醇凝胶的 2.37 V 扩展到 2.96 V,这表明拓扑网络中的氢键对水分子的束缚非常出色。此外,使用拓扑凝胶组装的电池和电容器在电流密度为 1.0 A g-1 时,经过 20,000 次循环后,电容量保持率分别达到 94.25% 和 87.63%;在电流密度为 0.5 A g-1 时,经过 10,000 次循环后,电容量保持率分别达到 87.63%。这项研究证明了利用拓扑凝胶设计来提高凝胶电解液稳定性的可行性,为今后在凝胶中调节拓扑网络以实现各种应用的研究提供了一条前景广阔的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Confined Water Dynamics in Topological Networks Hydrogel for Aqueous Electrochemical Devices.

Confined Water Dynamics in Topological Networks Hydrogel for Aqueous Electrochemical Devices.

The unique properties of confined water molecules within polymer networks have garnered extensive research interest in energy storage, catalysis, and sensing. Confined water molecules exhibit higher thermodynamic stability compared to free water, which reduces decomposition and evaporation of water in hydrogel electrolyte system. Herein, a facile strategy is developed to limit active water molecules in a hydrogel network via hydrogen bonding within a topological network. The design of this gel enhances hydrogen bonding between the gel network and water molecules, thereby improving stability by constructing interpenetrating networks. Using this design, the topological network gel is selected as the electrolyte for batteries, demonstrating an extended electrochemical window from 2.37 V with polyvinyl alcohol gel to 2.96 V, indicating superior confinement of water molecules by hydrogen bonds in the topological network. Additionally, batteries and capacitors assembled with the topological gel exhibit high-capacity retention rates of 94.25% after 20 000 cycles at a current density of 1.0 A g-1 and 87.63% after 10 000 cycles at a current density of 0.5 A g-1, respectively. This study demonstrates the feasibility of using a topological gel design to enhance gel electrolyte stability, offering a promising avenue for future research in regulating topological networks within gels for various applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信