{"title":"通过在非线性光学材料 CsM2In2S6(M = Cd/In,Hg/In)中加入前所未有的正三角形平面 MS3 Motifs 实现相位匹配。","authors":"Lin-Tao Jiang, Yi-Bing Huang, Shao-Min Pei, Xiao-Ming Jiang, Bin-Wen Liu, Guo-Cong Guo","doi":"10.1002/smll.202408485","DOIUrl":null,"url":null,"abstract":"<p><p>The trigonal planar unit possesses significant hyperpolarizability and polarizability anisotropy, which makes it useful for optimizing nonlinear optical (NLO) materials, however, chalcogenide with this unit has seldom been reported. In this work, a novel approach is introduced by integrating the unprecedented trigonal planar MS<sub>3</sub> (M = Cd/In, Hg/In) motifs into the nearly optically isotropic tetrahedral units, resulting in two novel chalcogenides CsM<sub>2</sub>In<sub>2</sub>S<sub>6</sub> (M = Cd/In, 1; Hg/In, 2). Notably, structures 1 and 2 feature nearly planar triangular units at the center, encircled by three trimers, further interconnecting each other to create 3D frameworks. Importantly, phases 1 and 2 display phase-matching (PM) capabilities, primarily attributed to incorporating trigonal planar MS<sub>3</sub> units that additionally enhance polarizability anisotropy. Furthermore, compounds 1 and 2 demonstrate moderate second-harmonic generation (SHG) signals (0.70 and 0.84 × AgGaS2@1.7 µm). This study pioneers an efficient strategy for the design of infrared NLO crystals with PM capabilities.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":" ","pages":"e2408485"},"PeriodicalIF":13.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Achieving Phase-Matching in Nonlinear Optical Materials CsM<sub>2</sub>In<sub>2</sub>S<sub>6</sub> (M = Cd/In, Hg/In) by the Incorporation of Unprecedented Trigonal Planar MS<sub>3</sub> Motifs.\",\"authors\":\"Lin-Tao Jiang, Yi-Bing Huang, Shao-Min Pei, Xiao-Ming Jiang, Bin-Wen Liu, Guo-Cong Guo\",\"doi\":\"10.1002/smll.202408485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The trigonal planar unit possesses significant hyperpolarizability and polarizability anisotropy, which makes it useful for optimizing nonlinear optical (NLO) materials, however, chalcogenide with this unit has seldom been reported. In this work, a novel approach is introduced by integrating the unprecedented trigonal planar MS<sub>3</sub> (M = Cd/In, Hg/In) motifs into the nearly optically isotropic tetrahedral units, resulting in two novel chalcogenides CsM<sub>2</sub>In<sub>2</sub>S<sub>6</sub> (M = Cd/In, 1; Hg/In, 2). Notably, structures 1 and 2 feature nearly planar triangular units at the center, encircled by three trimers, further interconnecting each other to create 3D frameworks. Importantly, phases 1 and 2 display phase-matching (PM) capabilities, primarily attributed to incorporating trigonal planar MS<sub>3</sub> units that additionally enhance polarizability anisotropy. Furthermore, compounds 1 and 2 demonstrate moderate second-harmonic generation (SHG) signals (0.70 and 0.84 × AgGaS2@1.7 µm). This study pioneers an efficient strategy for the design of infrared NLO crystals with PM capabilities.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\" \",\"pages\":\"e2408485\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202408485\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202408485","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Achieving Phase-Matching in Nonlinear Optical Materials CsM2In2S6 (M = Cd/In, Hg/In) by the Incorporation of Unprecedented Trigonal Planar MS3 Motifs.
The trigonal planar unit possesses significant hyperpolarizability and polarizability anisotropy, which makes it useful for optimizing nonlinear optical (NLO) materials, however, chalcogenide with this unit has seldom been reported. In this work, a novel approach is introduced by integrating the unprecedented trigonal planar MS3 (M = Cd/In, Hg/In) motifs into the nearly optically isotropic tetrahedral units, resulting in two novel chalcogenides CsM2In2S6 (M = Cd/In, 1; Hg/In, 2). Notably, structures 1 and 2 feature nearly planar triangular units at the center, encircled by three trimers, further interconnecting each other to create 3D frameworks. Importantly, phases 1 and 2 display phase-matching (PM) capabilities, primarily attributed to incorporating trigonal planar MS3 units that additionally enhance polarizability anisotropy. Furthermore, compounds 1 and 2 demonstrate moderate second-harmonic generation (SHG) signals (0.70 and 0.84 × AgGaS2@1.7 µm). This study pioneers an efficient strategy for the design of infrared NLO crystals with PM capabilities.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.