Weinan Li, Qianqian Li, Jiahang Che, Jie Ren, Aike Wang, Jinhuan Chen
{"title":"一种关键的 R2R3-MYB 转录因子可激活花青素的生物合成并导致杨树突变体的叶片变红。","authors":"Weinan Li, Qianqian Li, Jiahang Che, Jie Ren, Aike Wang, Jinhuan Chen","doi":"10.1111/pce.15276","DOIUrl":null,"url":null,"abstract":"<p><p>Colorful woody plants are highly valued for their ornamental qualities, and are commonly used in garden landscape design. We previously cultivated several ornamental poplar varieties from bud mutants of Populus sp. Linn. '2025' (ZL2025), each with different leaf colors. Based on transcriptome data from these varieties with varying anthocyanin pigmentation, we identified and named an R2R3-MYB gene, PdMYB113. The mRNA of PdMYB113 accumulated in the leaves of the red-leaf mutants 'QHY' and 'LHY', but barely expressed in the leaves of 'ZL2025'. The anthocyanin biosynthesis genes were upregulated, resulting in high levels of red anthocyanins (particularly Peonidin-3-O-rutinoside, Cyanidin-3-O-rutinoside, and Cyanidin-3-O-glucoside) in both OE-PdMYB113 tobacco and poplar plants. This upregulation caused a color change in the tissues from green to red or dark purple. Yeast one-hybrid and luciferase assays demonstrated that PdMYB113 activates the expression of anthocyanin biosynthesis genes, including the early anthocyanin biosynthetic gene PdCHS and the late anthocynin biosynthetic gene PdANS. Consequently, PdMYB113 is identified as a key regulator of red coloration in poplar. Additionally, PdMYB113 does not dwarf transgenic plants under normal lighting conditions. This study elucidates the regulatory mechanisms of color change in ZL2025 and highlights a crucial gene for breeding new varieties of woody plants.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Key R2R3-MYB Transcription Factor Activates Anthocyanin Biosynthesis and Leads to Leaf Reddening in Poplar Mutants.\",\"authors\":\"Weinan Li, Qianqian Li, Jiahang Che, Jie Ren, Aike Wang, Jinhuan Chen\",\"doi\":\"10.1111/pce.15276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Colorful woody plants are highly valued for their ornamental qualities, and are commonly used in garden landscape design. We previously cultivated several ornamental poplar varieties from bud mutants of Populus sp. Linn. '2025' (ZL2025), each with different leaf colors. Based on transcriptome data from these varieties with varying anthocyanin pigmentation, we identified and named an R2R3-MYB gene, PdMYB113. The mRNA of PdMYB113 accumulated in the leaves of the red-leaf mutants 'QHY' and 'LHY', but barely expressed in the leaves of 'ZL2025'. The anthocyanin biosynthesis genes were upregulated, resulting in high levels of red anthocyanins (particularly Peonidin-3-O-rutinoside, Cyanidin-3-O-rutinoside, and Cyanidin-3-O-glucoside) in both OE-PdMYB113 tobacco and poplar plants. This upregulation caused a color change in the tissues from green to red or dark purple. Yeast one-hybrid and luciferase assays demonstrated that PdMYB113 activates the expression of anthocyanin biosynthesis genes, including the early anthocyanin biosynthetic gene PdCHS and the late anthocynin biosynthetic gene PdANS. Consequently, PdMYB113 is identified as a key regulator of red coloration in poplar. Additionally, PdMYB113 does not dwarf transgenic plants under normal lighting conditions. This study elucidates the regulatory mechanisms of color change in ZL2025 and highlights a crucial gene for breeding new varieties of woody plants.</p>\",\"PeriodicalId\":222,\"journal\":{\"name\":\"Plant, Cell & Environment\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant, Cell & Environment\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://doi.org/10.1111/pce.15276\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15276","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
A Key R2R3-MYB Transcription Factor Activates Anthocyanin Biosynthesis and Leads to Leaf Reddening in Poplar Mutants.
Colorful woody plants are highly valued for their ornamental qualities, and are commonly used in garden landscape design. We previously cultivated several ornamental poplar varieties from bud mutants of Populus sp. Linn. '2025' (ZL2025), each with different leaf colors. Based on transcriptome data from these varieties with varying anthocyanin pigmentation, we identified and named an R2R3-MYB gene, PdMYB113. The mRNA of PdMYB113 accumulated in the leaves of the red-leaf mutants 'QHY' and 'LHY', but barely expressed in the leaves of 'ZL2025'. The anthocyanin biosynthesis genes were upregulated, resulting in high levels of red anthocyanins (particularly Peonidin-3-O-rutinoside, Cyanidin-3-O-rutinoside, and Cyanidin-3-O-glucoside) in both OE-PdMYB113 tobacco and poplar plants. This upregulation caused a color change in the tissues from green to red or dark purple. Yeast one-hybrid and luciferase assays demonstrated that PdMYB113 activates the expression of anthocyanin biosynthesis genes, including the early anthocyanin biosynthetic gene PdCHS and the late anthocynin biosynthetic gene PdANS. Consequently, PdMYB113 is identified as a key regulator of red coloration in poplar. Additionally, PdMYB113 does not dwarf transgenic plants under normal lighting conditions. This study elucidates the regulatory mechanisms of color change in ZL2025 and highlights a crucial gene for breeding new varieties of woody plants.
期刊介绍:
Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.