{"title":"由双晶聚合物组成的电纺同轴纤维的热处理诱导晶体发育和晶体取向变化。","authors":"Yu-Rong Hu, Hsin-Yu Lin, Chieh-Tsung Lo","doi":"10.1002/marc.202400731","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the crystallization behavior of electrospun coaxial fibers composed of crystalline poly(ethylene oxide) (PEO) in the core and crystalline poly(L-lactide) (PLLA) in the sheath. The influence of cold crystallization temperature and premelting temperature on the crystallization of PEO and PLLA is investigated. At a cold crystallization temperature of ≤60 °C, PLLA remained immobile. PEO crystallization is hard-confined, leading to a low degree of crystallinity. At a cold crystallization temperature of >60 °C, PEO melted, whereas PLLA crystallized. An increase in cold crystallization temperature results in an increase in the crystallite size and crystallinity of PLLA. Furthermore, the melt crystallization behavior of PEO in the coaxial fibers is strongly influenced by its premelting temperature and crystallization temperature. A higher premelting temperature leads to enhanced interdiffusion between PEO and PLLA. This increased confinement results in a decrease in PEO's crystallizability. Additionally, premelting relaxes the PEO chains, causing a shift in crystal orientation from parallel to the fiber axis (observed in as-electrospun fibers) to perpendicular to the fiber axis (observed in melt-crystallized fibers). Moreover, at a low melt crystallization temperature, demixing between PEO and PLLA is observed. This, coupled with a higher degree of supercooling, leads to an increase in PEO's crystallizability.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2400731"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal Treatment Induced Crystal Development and Crystal Orientation Change in Electrospun Coaxial Fibers Comprising Dual Crystalline Polymers.\",\"authors\":\"Yu-Rong Hu, Hsin-Yu Lin, Chieh-Tsung Lo\",\"doi\":\"10.1002/marc.202400731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigates the crystallization behavior of electrospun coaxial fibers composed of crystalline poly(ethylene oxide) (PEO) in the core and crystalline poly(L-lactide) (PLLA) in the sheath. The influence of cold crystallization temperature and premelting temperature on the crystallization of PEO and PLLA is investigated. At a cold crystallization temperature of ≤60 °C, PLLA remained immobile. PEO crystallization is hard-confined, leading to a low degree of crystallinity. At a cold crystallization temperature of >60 °C, PEO melted, whereas PLLA crystallized. An increase in cold crystallization temperature results in an increase in the crystallite size and crystallinity of PLLA. Furthermore, the melt crystallization behavior of PEO in the coaxial fibers is strongly influenced by its premelting temperature and crystallization temperature. A higher premelting temperature leads to enhanced interdiffusion between PEO and PLLA. This increased confinement results in a decrease in PEO's crystallizability. Additionally, premelting relaxes the PEO chains, causing a shift in crystal orientation from parallel to the fiber axis (observed in as-electrospun fibers) to perpendicular to the fiber axis (observed in melt-crystallized fibers). Moreover, at a low melt crystallization temperature, demixing between PEO and PLLA is observed. This, coupled with a higher degree of supercooling, leads to an increase in PEO's crystallizability.</p>\",\"PeriodicalId\":205,\"journal\":{\"name\":\"Macromolecular Rapid Communications\",\"volume\":\" \",\"pages\":\"e2400731\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Rapid Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/marc.202400731\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202400731","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Thermal Treatment Induced Crystal Development and Crystal Orientation Change in Electrospun Coaxial Fibers Comprising Dual Crystalline Polymers.
This study investigates the crystallization behavior of electrospun coaxial fibers composed of crystalline poly(ethylene oxide) (PEO) in the core and crystalline poly(L-lactide) (PLLA) in the sheath. The influence of cold crystallization temperature and premelting temperature on the crystallization of PEO and PLLA is investigated. At a cold crystallization temperature of ≤60 °C, PLLA remained immobile. PEO crystallization is hard-confined, leading to a low degree of crystallinity. At a cold crystallization temperature of >60 °C, PEO melted, whereas PLLA crystallized. An increase in cold crystallization temperature results in an increase in the crystallite size and crystallinity of PLLA. Furthermore, the melt crystallization behavior of PEO in the coaxial fibers is strongly influenced by its premelting temperature and crystallization temperature. A higher premelting temperature leads to enhanced interdiffusion between PEO and PLLA. This increased confinement results in a decrease in PEO's crystallizability. Additionally, premelting relaxes the PEO chains, causing a shift in crystal orientation from parallel to the fiber axis (observed in as-electrospun fibers) to perpendicular to the fiber axis (observed in melt-crystallized fibers). Moreover, at a low melt crystallization temperature, demixing between PEO and PLLA is observed. This, coupled with a higher degree of supercooling, leads to an increase in PEO's crystallizability.
期刊介绍:
Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.