{"title":"制备基于纤维素纳米晶体和多壁碳纳米管的纳米复合水凝胶,用于人体运动监测","authors":"Jiarui Liu, Lulu Wang, Liangjiu Bai, Wenxiang Wang, Lixia Yang, Hou Chen, Huawei Yang, Donglei Wei","doi":"10.1002/macp.202400207","DOIUrl":null,"url":null,"abstract":"<p>In this study, a flexible sensor is successfully fabricated using self-healing nanocomposite hydrogels for monitoring human movement. The eco-friendly cellulose nanocrystals (CNCs) are used as nano-reinforcing materials, and the mechanical properties and self-healing efficiency of the materials are improved. The self-healing efficiency of hydrogels are realized by introducing a variety of reversible non-covalent interactions such as hydrogen bonding, borax chelation, and metal coordination. Notably, the mechanical strength and self-healing efficiency of these nanocomposite hydrogels can reach 2.8 MPa and 89.9%, respectively. Importantly, these self-healing nanocomposite hydrogels have been widely used in wearable flexible sensors to achieve high sensitivity to large-scale human movement. It is of great significance to design functional materials with good biocompatibility, sensitivity, and mechanical strength for wearable sensors.</p>","PeriodicalId":18054,"journal":{"name":"Macromolecular Chemistry and Physics","volume":"225 21","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of Nanocomposite Hydrogels Based on Cellulose Nanocrystals and Multi-Walled Carbon Nanotubes for Human Motion Monitoring\",\"authors\":\"Jiarui Liu, Lulu Wang, Liangjiu Bai, Wenxiang Wang, Lixia Yang, Hou Chen, Huawei Yang, Donglei Wei\",\"doi\":\"10.1002/macp.202400207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, a flexible sensor is successfully fabricated using self-healing nanocomposite hydrogels for monitoring human movement. The eco-friendly cellulose nanocrystals (CNCs) are used as nano-reinforcing materials, and the mechanical properties and self-healing efficiency of the materials are improved. The self-healing efficiency of hydrogels are realized by introducing a variety of reversible non-covalent interactions such as hydrogen bonding, borax chelation, and metal coordination. Notably, the mechanical strength and self-healing efficiency of these nanocomposite hydrogels can reach 2.8 MPa and 89.9%, respectively. Importantly, these self-healing nanocomposite hydrogels have been widely used in wearable flexible sensors to achieve high sensitivity to large-scale human movement. It is of great significance to design functional materials with good biocompatibility, sensitivity, and mechanical strength for wearable sensors.</p>\",\"PeriodicalId\":18054,\"journal\":{\"name\":\"Macromolecular Chemistry and Physics\",\"volume\":\"225 21\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Chemistry and Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/macp.202400207\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Chemistry and Physics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/macp.202400207","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Fabrication of Nanocomposite Hydrogels Based on Cellulose Nanocrystals and Multi-Walled Carbon Nanotubes for Human Motion Monitoring
In this study, a flexible sensor is successfully fabricated using self-healing nanocomposite hydrogels for monitoring human movement. The eco-friendly cellulose nanocrystals (CNCs) are used as nano-reinforcing materials, and the mechanical properties and self-healing efficiency of the materials are improved. The self-healing efficiency of hydrogels are realized by introducing a variety of reversible non-covalent interactions such as hydrogen bonding, borax chelation, and metal coordination. Notably, the mechanical strength and self-healing efficiency of these nanocomposite hydrogels can reach 2.8 MPa and 89.9%, respectively. Importantly, these self-healing nanocomposite hydrogels have been widely used in wearable flexible sensors to achieve high sensitivity to large-scale human movement. It is of great significance to design functional materials with good biocompatibility, sensitivity, and mechanical strength for wearable sensors.
期刊介绍:
Macromolecular Chemistry and Physics publishes in all areas of polymer science - from chemistry, physical chemistry, and physics of polymers to polymers in materials science. Beside an attractive mixture of high-quality Full Papers, Trends, and Highlights, the journal offers a unique article type dedicated to young scientists – Talent.