{"title":"潘那老虎保护区主要食肉动物之间的种间相互作用:多物种占据法","authors":"Supratim Dutta, Gopinathan Maheswaran, Ramesh Krishnamurthy","doi":"10.1111/btp.13389","DOIUrl":null,"url":null,"abstract":"<p>Large carnivores play a crucial role in trophic cascades, affecting the population dynamics of both co-predators and prey within an ecosystem. Understanding the significance of these carnivores in trophic interactions is essential for developing effective conservation and management strategies. We examined the effects of occupancy dynamics and patterns of species interactions and coexistence within the carnivore guild in the Panna Tiger Reserve in India. We collected camera trap data (two seasons, 2019) in a presence–absence framework and applied multispecies occupancy models to assess the occupancy, co-occurrence, and interactions among species. We also examined activity overlap to understand the temporal segregation in the carnivore guild. The mean marginal occupancy was highest for leopards in winter (Ψ<sub>winter</sub> 0.92 ± 0.02, Ψ<sub>summer</sub> 0.63 ± 0.05) and hyenas in summer (Ψ<sub>summer</sub> 0.93 ± 0.03, Ψ<sub>winter</sub> 0.78 ± 0.03) and was lowest for tigers in both seasons (Ψ<sub>winter</sub> 0.62 ± 0.05, Ψ<sub>summer</sub> 0.15 ± 0.05). Co-occurrence probability among carnivores was higher in winter than in summer, and conditional occupancy was consistently higher when other species were present. Different environmental factors influenced marginal occupancy and co-occurrence patterns across seasons. Strong temporal overlaps were recorded between tiger–leopard (0.87–0.91) and tiger–hyena (0.78–0.79). We detected a significant spatial segregation between tigers and leopards, as they prefer different habitat types in different seasons, along with high temporal overlap. Resource availability strongly governs the association of carnivores with their habitat selection. Hyenas demonstrated higher dependency on tigers than on leopards for resources. These findings indicate that coexistence with apex-predator species is feasible through strategic adaptation to fulfill resource requisition.</p>","PeriodicalId":8982,"journal":{"name":"Biotropica","volume":"56 6","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/btp.13389","citationCount":"0","resultStr":"{\"title\":\"Interspecific interactions among major carnivores in Panna Tiger Reserve: A multispecies occupancy approach\",\"authors\":\"Supratim Dutta, Gopinathan Maheswaran, Ramesh Krishnamurthy\",\"doi\":\"10.1111/btp.13389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Large carnivores play a crucial role in trophic cascades, affecting the population dynamics of both co-predators and prey within an ecosystem. Understanding the significance of these carnivores in trophic interactions is essential for developing effective conservation and management strategies. We examined the effects of occupancy dynamics and patterns of species interactions and coexistence within the carnivore guild in the Panna Tiger Reserve in India. We collected camera trap data (two seasons, 2019) in a presence–absence framework and applied multispecies occupancy models to assess the occupancy, co-occurrence, and interactions among species. We also examined activity overlap to understand the temporal segregation in the carnivore guild. The mean marginal occupancy was highest for leopards in winter (Ψ<sub>winter</sub> 0.92 ± 0.02, Ψ<sub>summer</sub> 0.63 ± 0.05) and hyenas in summer (Ψ<sub>summer</sub> 0.93 ± 0.03, Ψ<sub>winter</sub> 0.78 ± 0.03) and was lowest for tigers in both seasons (Ψ<sub>winter</sub> 0.62 ± 0.05, Ψ<sub>summer</sub> 0.15 ± 0.05). Co-occurrence probability among carnivores was higher in winter than in summer, and conditional occupancy was consistently higher when other species were present. Different environmental factors influenced marginal occupancy and co-occurrence patterns across seasons. Strong temporal overlaps were recorded between tiger–leopard (0.87–0.91) and tiger–hyena (0.78–0.79). We detected a significant spatial segregation between tigers and leopards, as they prefer different habitat types in different seasons, along with high temporal overlap. Resource availability strongly governs the association of carnivores with their habitat selection. Hyenas demonstrated higher dependency on tigers than on leopards for resources. These findings indicate that coexistence with apex-predator species is feasible through strategic adaptation to fulfill resource requisition.</p>\",\"PeriodicalId\":8982,\"journal\":{\"name\":\"Biotropica\",\"volume\":\"56 6\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/btp.13389\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotropica\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/btp.13389\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotropica","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/btp.13389","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
Interspecific interactions among major carnivores in Panna Tiger Reserve: A multispecies occupancy approach
Large carnivores play a crucial role in trophic cascades, affecting the population dynamics of both co-predators and prey within an ecosystem. Understanding the significance of these carnivores in trophic interactions is essential for developing effective conservation and management strategies. We examined the effects of occupancy dynamics and patterns of species interactions and coexistence within the carnivore guild in the Panna Tiger Reserve in India. We collected camera trap data (two seasons, 2019) in a presence–absence framework and applied multispecies occupancy models to assess the occupancy, co-occurrence, and interactions among species. We also examined activity overlap to understand the temporal segregation in the carnivore guild. The mean marginal occupancy was highest for leopards in winter (Ψwinter 0.92 ± 0.02, Ψsummer 0.63 ± 0.05) and hyenas in summer (Ψsummer 0.93 ± 0.03, Ψwinter 0.78 ± 0.03) and was lowest for tigers in both seasons (Ψwinter 0.62 ± 0.05, Ψsummer 0.15 ± 0.05). Co-occurrence probability among carnivores was higher in winter than in summer, and conditional occupancy was consistently higher when other species were present. Different environmental factors influenced marginal occupancy and co-occurrence patterns across seasons. Strong temporal overlaps were recorded between tiger–leopard (0.87–0.91) and tiger–hyena (0.78–0.79). We detected a significant spatial segregation between tigers and leopards, as they prefer different habitat types in different seasons, along with high temporal overlap. Resource availability strongly governs the association of carnivores with their habitat selection. Hyenas demonstrated higher dependency on tigers than on leopards for resources. These findings indicate that coexistence with apex-predator species is feasible through strategic adaptation to fulfill resource requisition.
期刊介绍:
Ranked by the ISI index, Biotropica is a highly regarded source of original research on the ecology, conservation and management of all tropical ecosystems, and on the evolution, behavior, and population biology of tropical organisms. Published on behalf of the Association of Tropical Biology and Conservation, the journal''s Special Issues and Special Sections quickly become indispensable references for researchers in the field. Biotropica publishes timely Papers, Reviews, Commentaries, and Insights. Commentaries generate thought-provoking ideas that frequently initiate fruitful debate and discussion, while Reviews provide authoritative and analytical overviews of topics of current conservation or ecological importance. The newly instituted category Insights replaces Short Communications.