{"title":"从青藏高原东北部祁连山东麓变形冲积层推断的断层相互作用和应变分区","authors":"Xiu Hu, Yiran Wang, Weitao Wang, Michael E. Oskin, Zhigang Li, Jinghao Lei, Youli Li, Peizhen Zhang, Wenjun Zheng, Kairong Lin, Shanfeng Xiao, Honghua Lu, Junxiang Zhao, Yipeng Zhang, Ruizhi Jin, Yuezhi Zhong","doi":"10.1029/2024JB028924","DOIUrl":null,"url":null,"abstract":"<p>Faulting and folding of basement rocks together accommodate convergence within continental orogens, forming complex zones of intraplate deformation shaped by the fault interaction. Here we use the river terraces along the Dongda river to examine the tectonic deformation patterns of the hinterland and the foreland of the eastern North Qilian Shan, a zone of crustal shortening located at the northeast margin of the Tibetan Plateau. Five Late Pleistocene–Holocene terraces of Dongda river are displaced by three major reverse faults: Minle-Damaying fault, Huangcheng-Ta'erzhuang fault, and Fengle fault, from south to north. Based on displaced terrace treads, we estimated vertical slip rates along the Minle-Damaying fault as 0.7–0.8 mm/a, and along the Fengle fault as 0.5–0.7 mm/a. Deformed terraces suggest an additional uplift of ∼0.2 mm/a through the folding of the Dahuang Shan anticline. Inhomogeneous uplift of the intermontane basins between the Minle-Damaying fault and the Dahuang Shan anticline indicates a 0.9 ± 0.2 mm/a uplift rate along the Huangcheng-Ta'erzhuang fault. Kinematic modeling of this thrust system shows that deformation propagated northward toward the foreland along a south-dipping 10° décollement rooted into the Haiyuan fault at the depth of ∼20 km. This system accommodates 2.7–3.4 mm/a total crustal shortening rate. We suggest this broad thrust belt and the relatively high rate of shortening within this part of the eastern Qilian Shan is a result of the oblique convergence along a restraining bend of Haiyuan fault system. The elevated shortening rate within this area indicates high potential seismic hazard.</p>","PeriodicalId":15864,"journal":{"name":"Journal of Geophysical Research: Solid Earth","volume":"129 11","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JB028924","citationCount":"0","resultStr":"{\"title\":\"Fault Interaction and Strain Partitioning Deduced From Deformed Fluvial Terraces of the Eastern North Qilian Foreland, NE Tibetan Plateau\",\"authors\":\"Xiu Hu, Yiran Wang, Weitao Wang, Michael E. Oskin, Zhigang Li, Jinghao Lei, Youli Li, Peizhen Zhang, Wenjun Zheng, Kairong Lin, Shanfeng Xiao, Honghua Lu, Junxiang Zhao, Yipeng Zhang, Ruizhi Jin, Yuezhi Zhong\",\"doi\":\"10.1029/2024JB028924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Faulting and folding of basement rocks together accommodate convergence within continental orogens, forming complex zones of intraplate deformation shaped by the fault interaction. Here we use the river terraces along the Dongda river to examine the tectonic deformation patterns of the hinterland and the foreland of the eastern North Qilian Shan, a zone of crustal shortening located at the northeast margin of the Tibetan Plateau. Five Late Pleistocene–Holocene terraces of Dongda river are displaced by three major reverse faults: Minle-Damaying fault, Huangcheng-Ta'erzhuang fault, and Fengle fault, from south to north. Based on displaced terrace treads, we estimated vertical slip rates along the Minle-Damaying fault as 0.7–0.8 mm/a, and along the Fengle fault as 0.5–0.7 mm/a. Deformed terraces suggest an additional uplift of ∼0.2 mm/a through the folding of the Dahuang Shan anticline. Inhomogeneous uplift of the intermontane basins between the Minle-Damaying fault and the Dahuang Shan anticline indicates a 0.9 ± 0.2 mm/a uplift rate along the Huangcheng-Ta'erzhuang fault. Kinematic modeling of this thrust system shows that deformation propagated northward toward the foreland along a south-dipping 10° décollement rooted into the Haiyuan fault at the depth of ∼20 km. This system accommodates 2.7–3.4 mm/a total crustal shortening rate. We suggest this broad thrust belt and the relatively high rate of shortening within this part of the eastern Qilian Shan is a result of the oblique convergence along a restraining bend of Haiyuan fault system. The elevated shortening rate within this area indicates high potential seismic hazard.</p>\",\"PeriodicalId\":15864,\"journal\":{\"name\":\"Journal of Geophysical Research: Solid Earth\",\"volume\":\"129 11\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JB028924\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Solid Earth\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JB028924\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JB028924","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Fault Interaction and Strain Partitioning Deduced From Deformed Fluvial Terraces of the Eastern North Qilian Foreland, NE Tibetan Plateau
Faulting and folding of basement rocks together accommodate convergence within continental orogens, forming complex zones of intraplate deformation shaped by the fault interaction. Here we use the river terraces along the Dongda river to examine the tectonic deformation patterns of the hinterland and the foreland of the eastern North Qilian Shan, a zone of crustal shortening located at the northeast margin of the Tibetan Plateau. Five Late Pleistocene–Holocene terraces of Dongda river are displaced by three major reverse faults: Minle-Damaying fault, Huangcheng-Ta'erzhuang fault, and Fengle fault, from south to north. Based on displaced terrace treads, we estimated vertical slip rates along the Minle-Damaying fault as 0.7–0.8 mm/a, and along the Fengle fault as 0.5–0.7 mm/a. Deformed terraces suggest an additional uplift of ∼0.2 mm/a through the folding of the Dahuang Shan anticline. Inhomogeneous uplift of the intermontane basins between the Minle-Damaying fault and the Dahuang Shan anticline indicates a 0.9 ± 0.2 mm/a uplift rate along the Huangcheng-Ta'erzhuang fault. Kinematic modeling of this thrust system shows that deformation propagated northward toward the foreland along a south-dipping 10° décollement rooted into the Haiyuan fault at the depth of ∼20 km. This system accommodates 2.7–3.4 mm/a total crustal shortening rate. We suggest this broad thrust belt and the relatively high rate of shortening within this part of the eastern Qilian Shan is a result of the oblique convergence along a restraining bend of Haiyuan fault system. The elevated shortening rate within this area indicates high potential seismic hazard.
期刊介绍:
The Journal of Geophysical Research: Solid Earth serves as the premier publication for the breadth of solid Earth geophysics including (in alphabetical order): electromagnetic methods; exploration geophysics; geodesy and gravity; geodynamics, rheology, and plate kinematics; geomagnetism and paleomagnetism; hydrogeophysics; Instruments, techniques, and models; solid Earth interactions with the cryosphere, atmosphere, oceans, and climate; marine geology and geophysics; natural and anthropogenic hazards; near surface geophysics; petrology, geochemistry, and mineralogy; planet Earth physics and chemistry; rock mechanics and deformation; seismology; tectonophysics; and volcanology.
JGR: Solid Earth has long distinguished itself as the venue for publication of Research Articles backed solidly by data and as well as presenting theoretical and numerical developments with broad applications. Research Articles published in JGR: Solid Earth have had long-term impacts in their fields.
JGR: Solid Earth provides a venue for special issues and special themes based on conferences, workshops, and community initiatives. JGR: Solid Earth also publishes Commentaries on research and emerging trends in the field; these are commissioned by the editors, and suggestion are welcome.