应用计算智能确定不同剪切棒位置对青贮高粱切碎过程中切碎长度和特定切碎能耗的影响

IF 2.7 3区 农林科学 Q3 ENGINEERING, CHEMICAL
Hüseyin Sauk
{"title":"应用计算智能确定不同剪切棒位置对青贮高粱切碎过程中切碎长度和特定切碎能耗的影响","authors":"Hüseyin Sauk","doi":"10.1111/jfpe.70002","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Flail forage harvesting machines are disadvantageous compared to other silage machines because of the uneven length of the chop obtained, the low distribution of the appropriate chopping length in the entire chopped material, and the high energy consumption. This issue is tackled by employing artificial neural networks (ANN), which serve as versatile mathematical instruments capable of capturing data. In this article, six different knife peripheral speeds (<i>KPS</i>) and three different shear bar (<i>SB</i>) positions were tested to determine the combination of <i>KPS</i> and <i>SB</i> positions that increased the proportion of suitable chopping length (<i>CL</i>) for silage and decreased the specific cutting energy consumption (<i>SCEC</i>) among all chopped material. The results have shown that, depending on the increase in <i>KPS</i>, the average <i>CL</i> varied between 165.28, 127.30, 100.24, 83.55, 77.06, and 65.09 mm. Depending on no shear bar (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>SB</mi>\n <mi>no</mi>\n </msub>\n </mrow>\n <annotation>$$ {SB}_{\\mathrm{no}} $$</annotation>\n </semantics></math>), shear bar positioned parallel to the feed unit (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>SB</mi>\n <mn>0</mn>\n </msub>\n </mrow>\n <annotation>$$ {SB}_0 $$</annotation>\n </semantics></math>), and shear bar positioned at an angle of 45° to the feed unit (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>SB</mi>\n <mn>45</mn>\n </msub>\n </mrow>\n <annotation>$$ {SB}_{45} $$</annotation>\n </semantics></math>) the average <i>CL</i> was determined as 114.73, 99.65, and 94.88 mm, respectively. Depending on the increase in <i>KPS</i>, the <i>SCEC</i> values vary between 0.97, 1.49, 1.89, 2.20, 3.05, and 4.12 kWh t<sup>−1</sup>. Depending on <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>SB</mi>\n <mi>no</mi>\n </msub>\n </mrow>\n <annotation>$$ {SB}_{\\mathrm{no}} $$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>SB</mi>\n <mn>0</mn>\n </msub>\n </mrow>\n <annotation>$$ {SB}_0 $$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>SB</mi>\n <mn>45</mn>\n </msub>\n </mrow>\n <annotation>$$ {SB}_{45} $$</annotation>\n </semantics></math> the <i>SCEC</i> values were determined as 1.64, 3.05, and 2.17 kWh t<sup>−1</sup>, respectively. The effects of <i>KPS</i> and <i>SB</i> positions on <i>CL</i> and <i>SCEC</i> were statistically very significant (<i>p</i> &lt; 0.001). An ANN model with a 3-(5-5)-1 architecture, utilizing a backpropagation learning algorithm, was developed to forecast <i>SCEC</i>. This model outperformed traditional statistical models and was constructed using data on <i>KPS</i>, <i>SB</i>, and <i>CL</i>. The ANN model exhibited the highest efficiency, outperforming the polynomial models. In this particular ANN model, key metrics such as coefficient of determination (<i>R</i><sup><i>2</i></sup>), root mean square error (RMSE), and mean error (<i>ε</i>) (0.9970%, 0.0159%, and 3.86% respectively) are significantly positive. This research convincingly demonstrated the efficacy of ANN in accurately predicting <i>SCEC</i>, leveraging data on <i>KPS</i>, <i>SB</i>, and average <i>CL</i>.</p>\n </div>","PeriodicalId":15932,"journal":{"name":"Journal of Food Process Engineering","volume":"47 11","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Computational Intelligence to Determine the Effect of Different Shear Bar Positions on Chopping Length and Specific Cutting Energy Consumption in the Chopping of Silage Sorghum\",\"authors\":\"Hüseyin Sauk\",\"doi\":\"10.1111/jfpe.70002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Flail forage harvesting machines are disadvantageous compared to other silage machines because of the uneven length of the chop obtained, the low distribution of the appropriate chopping length in the entire chopped material, and the high energy consumption. This issue is tackled by employing artificial neural networks (ANN), which serve as versatile mathematical instruments capable of capturing data. In this article, six different knife peripheral speeds (<i>KPS</i>) and three different shear bar (<i>SB</i>) positions were tested to determine the combination of <i>KPS</i> and <i>SB</i> positions that increased the proportion of suitable chopping length (<i>CL</i>) for silage and decreased the specific cutting energy consumption (<i>SCEC</i>) among all chopped material. The results have shown that, depending on the increase in <i>KPS</i>, the average <i>CL</i> varied between 165.28, 127.30, 100.24, 83.55, 77.06, and 65.09 mm. Depending on no shear bar (<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>SB</mi>\\n <mi>no</mi>\\n </msub>\\n </mrow>\\n <annotation>$$ {SB}_{\\\\mathrm{no}} $$</annotation>\\n </semantics></math>), shear bar positioned parallel to the feed unit (<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>SB</mi>\\n <mn>0</mn>\\n </msub>\\n </mrow>\\n <annotation>$$ {SB}_0 $$</annotation>\\n </semantics></math>), and shear bar positioned at an angle of 45° to the feed unit (<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>SB</mi>\\n <mn>45</mn>\\n </msub>\\n </mrow>\\n <annotation>$$ {SB}_{45} $$</annotation>\\n </semantics></math>) the average <i>CL</i> was determined as 114.73, 99.65, and 94.88 mm, respectively. Depending on the increase in <i>KPS</i>, the <i>SCEC</i> values vary between 0.97, 1.49, 1.89, 2.20, 3.05, and 4.12 kWh t<sup>−1</sup>. Depending on <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>SB</mi>\\n <mi>no</mi>\\n </msub>\\n </mrow>\\n <annotation>$$ {SB}_{\\\\mathrm{no}} $$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>SB</mi>\\n <mn>0</mn>\\n </msub>\\n </mrow>\\n <annotation>$$ {SB}_0 $$</annotation>\\n </semantics></math>, and <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>SB</mi>\\n <mn>45</mn>\\n </msub>\\n </mrow>\\n <annotation>$$ {SB}_{45} $$</annotation>\\n </semantics></math> the <i>SCEC</i> values were determined as 1.64, 3.05, and 2.17 kWh t<sup>−1</sup>, respectively. The effects of <i>KPS</i> and <i>SB</i> positions on <i>CL</i> and <i>SCEC</i> were statistically very significant (<i>p</i> &lt; 0.001). An ANN model with a 3-(5-5)-1 architecture, utilizing a backpropagation learning algorithm, was developed to forecast <i>SCEC</i>. This model outperformed traditional statistical models and was constructed using data on <i>KPS</i>, <i>SB</i>, and <i>CL</i>. The ANN model exhibited the highest efficiency, outperforming the polynomial models. In this particular ANN model, key metrics such as coefficient of determination (<i>R</i><sup><i>2</i></sup>), root mean square error (RMSE), and mean error (<i>ε</i>) (0.9970%, 0.0159%, and 3.86% respectively) are significantly positive. This research convincingly demonstrated the efficacy of ANN in accurately predicting <i>SCEC</i>, leveraging data on <i>KPS</i>, <i>SB</i>, and average <i>CL</i>.</p>\\n </div>\",\"PeriodicalId\":15932,\"journal\":{\"name\":\"Journal of Food Process Engineering\",\"volume\":\"47 11\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Process Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jfpe.70002\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Process Engineering","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jfpe.70002","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

与其他青贮饲料收割机相比,鞭打式牧草收割机的缺点是切碎的牧草长度不均匀,切碎的牧草长度在整个切碎的牧草中分布不均,而且能耗高。人工神经网络(ANN)是一种能够捕捉数据的多功能数学工具,通过使用人工神经网络可以解决这一问题。本文测试了六种不同的刀具外围速度(KPS)和三种不同的剪切棒(SB)位置,以确定 KPS 和 SB 位置的组合,从而提高青贮饲料的合适切碎长度(CL)比例,降低所有切碎材料的特定切碎能耗(SCEC)。结果表明,随着 KPS 的增加,平均切碎长度在 165.28、127.30、100.24、83.55、77.06 和 65.09 毫米之间变化。根据无剪力杆(SB no $$ {SB}_{\mathrm{no}}$$ )、剪切棒平行于进料装置(SB 0 $$ {SB}_0 $$)和剪切棒与进料装置成 45° 角(SB 45 $$ {SB}_{45} $$)时,平均 CL 分别为 114.73、99.65 和 94.88 mm。根据 KPS 的增加,SCEC 值在 0.97、1.49、1.89、2.20、3.05 和 4.12 kWh t-1 之间变化。根据 SB no $$ {SB}_{mathrm{no}}$$ 、SB 0 $$ {SB}_0 $$ 和 SB 45 $$ {SB}_{45} $$ 时,SCEC 值分别为 1.64、3.05 和 2.17 kWh t-1。KPS 和 SB 位置对 CL 和 SCEC 的影响在统计学上非常显著(p < 0.001)。利用反向传播学习算法,开发了一个具有 3-(5-5)-1 结构的 ANN 模型来预测 SCEC。该模型利用 KPS、SB 和 CL 数据构建,其性能优于传统的统计模型。ANN 模型的效率最高,超过了多项式模型。在这一特定的 ANN 模型中,决定系数 (R2)、均方根误差 (RMSE) 和平均误差 (ε)(分别为 0.9970%、0.0159% 和 3.86%)等关键指标均为显著正值。这项研究利用 KPS、SB 和平均 CL 数据,令人信服地证明了 ANN 在准确预测 SCEC 方面的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Computational Intelligence to Determine the Effect of Different Shear Bar Positions on Chopping Length and Specific Cutting Energy Consumption in the Chopping of Silage Sorghum

Flail forage harvesting machines are disadvantageous compared to other silage machines because of the uneven length of the chop obtained, the low distribution of the appropriate chopping length in the entire chopped material, and the high energy consumption. This issue is tackled by employing artificial neural networks (ANN), which serve as versatile mathematical instruments capable of capturing data. In this article, six different knife peripheral speeds (KPS) and three different shear bar (SB) positions were tested to determine the combination of KPS and SB positions that increased the proportion of suitable chopping length (CL) for silage and decreased the specific cutting energy consumption (SCEC) among all chopped material. The results have shown that, depending on the increase in KPS, the average CL varied between 165.28, 127.30, 100.24, 83.55, 77.06, and 65.09 mm. Depending on no shear bar ( SB no $$ {SB}_{\mathrm{no}} $$ ), shear bar positioned parallel to the feed unit ( SB 0 $$ {SB}_0 $$ ), and shear bar positioned at an angle of 45° to the feed unit ( SB 45 $$ {SB}_{45} $$ ) the average CL was determined as 114.73, 99.65, and 94.88 mm, respectively. Depending on the increase in KPS, the SCEC values vary between 0.97, 1.49, 1.89, 2.20, 3.05, and 4.12 kWh t−1. Depending on SB no $$ {SB}_{\mathrm{no}} $$ , SB 0 $$ {SB}_0 $$ , and SB 45 $$ {SB}_{45} $$ the SCEC values were determined as 1.64, 3.05, and 2.17 kWh t−1, respectively. The effects of KPS and SB positions on CL and SCEC were statistically very significant (p < 0.001). An ANN model with a 3-(5-5)-1 architecture, utilizing a backpropagation learning algorithm, was developed to forecast SCEC. This model outperformed traditional statistical models and was constructed using data on KPS, SB, and CL. The ANN model exhibited the highest efficiency, outperforming the polynomial models. In this particular ANN model, key metrics such as coefficient of determination (R2), root mean square error (RMSE), and mean error (ε) (0.9970%, 0.0159%, and 3.86% respectively) are significantly positive. This research convincingly demonstrated the efficacy of ANN in accurately predicting SCEC, leveraging data on KPS, SB, and average CL.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Food Process Engineering
Journal of Food Process Engineering 工程技术-工程:化工
CiteScore
5.70
自引率
10.00%
发文量
259
审稿时长
2 months
期刊介绍: This international research journal focuses on the engineering aspects of post-production handling, storage, processing, packaging, and distribution of food. Read by researchers, food and chemical engineers, and industry experts, this is the only international journal specifically devoted to the engineering aspects of food processing. Co-Editors M. Elena Castell-Perez and Rosana Moreira, both of Texas A&M University, welcome papers covering the best original research on applications of engineering principles and concepts to food and food processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信