广义同步提取变换:算法与应用

IF 7.9 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Wenjie Bao, Songyong Liu, Zhen Liu, Fucai Li
{"title":"广义同步提取变换:算法与应用","authors":"Wenjie Bao, Songyong Liu, Zhen Liu, Fucai Li","doi":"10.1016/j.ymssp.2024.112116","DOIUrl":null,"url":null,"abstract":"Time-frequency (TF) rearrangement methods represented by synchrosqueezing transform (SST) and synchroextracting transform (SET) have recently been considered efficient tools for obtaining time-varying features of nonstationary signals. However, so far improving concentration and accuracy is still an open problem, especially for the signal with strongly time-varying instantaneous frequency (IF), due to the fact that they cannot achieve an accurate and generalized IF estimation. In order to address this problem, we introduce a new TF analysis method termed as generalized synchroextracting transform (GSET) by constructing a general signal model. Our first contribution in this study is proposing a new computational framework to derive the generalized explicit formula of <mml:math altimg=\"si10.svg\"><mml:msup><mml:mrow><mml:mi>N</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant=\"italic\">th</mml:mi></mml:mrow></mml:msup></mml:math>-order IF estimation, which can realize the programming of any order IF. By extracting the energy of the TF representation (TFR) on the estimated IF, a more concentrated and accurate TFR can be obtained. Our second contribution is giving a more accurate signal reconstruction method of the TFR from a new perspective. It solves the problem that the reconstruction method of the synchroextracting transform cannot be extended to the <mml:math altimg=\"si10.svg\"><mml:msup><mml:mrow><mml:mi>N</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant=\"italic\">th</mml:mi></mml:mrow></mml:msup></mml:math>-order. Numerical analysis of multicomponent simulated signal demonstrates that the GSET can effectively improve the TF readability of strongly time-varying signal and accurately reconstruct the signal from the TFR. Moreover, experiment and application results verify that the proposed method can be used for fault diagnosis of rotating machinery.","PeriodicalId":51124,"journal":{"name":"Mechanical Systems and Signal Processing","volume":"43 1","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized synchroextracting transform: Algorithm and applications\",\"authors\":\"Wenjie Bao, Songyong Liu, Zhen Liu, Fucai Li\",\"doi\":\"10.1016/j.ymssp.2024.112116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time-frequency (TF) rearrangement methods represented by synchrosqueezing transform (SST) and synchroextracting transform (SET) have recently been considered efficient tools for obtaining time-varying features of nonstationary signals. However, so far improving concentration and accuracy is still an open problem, especially for the signal with strongly time-varying instantaneous frequency (IF), due to the fact that they cannot achieve an accurate and generalized IF estimation. In order to address this problem, we introduce a new TF analysis method termed as generalized synchroextracting transform (GSET) by constructing a general signal model. Our first contribution in this study is proposing a new computational framework to derive the generalized explicit formula of <mml:math altimg=\\\"si10.svg\\\"><mml:msup><mml:mrow><mml:mi>N</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant=\\\"italic\\\">th</mml:mi></mml:mrow></mml:msup></mml:math>-order IF estimation, which can realize the programming of any order IF. By extracting the energy of the TF representation (TFR) on the estimated IF, a more concentrated and accurate TFR can be obtained. Our second contribution is giving a more accurate signal reconstruction method of the TFR from a new perspective. It solves the problem that the reconstruction method of the synchroextracting transform cannot be extended to the <mml:math altimg=\\\"si10.svg\\\"><mml:msup><mml:mrow><mml:mi>N</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant=\\\"italic\\\">th</mml:mi></mml:mrow></mml:msup></mml:math>-order. Numerical analysis of multicomponent simulated signal demonstrates that the GSET can effectively improve the TF readability of strongly time-varying signal and accurately reconstruct the signal from the TFR. Moreover, experiment and application results verify that the proposed method can be used for fault diagnosis of rotating machinery.\",\"PeriodicalId\":51124,\"journal\":{\"name\":\"Mechanical Systems and Signal Processing\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanical Systems and Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ymssp.2024.112116\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanical Systems and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ymssp.2024.112116","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

以同步萃取变换(SST)和同步提取变换(SET)为代表的时频(TF)重排方法最近被认为是获取非稳态信号时变特征的有效工具。然而,到目前为止,提高集中度和准确度仍是一个未决问题,尤其是对于具有强烈时变瞬时频率(IF)的信号,因为它们无法实现准确和通用的 IF 估计。为了解决这个问题,我们通过构建一个通用信号模型,引入了一种新的 TF 分析方法,称为广义同步提取变换(GSET)。我们在这项研究中的第一个贡献是提出了一个新的计算框架,以推导出 N 阶中频估计的广义显式公式,它可以实现任意阶中频的编程。通过提取估计中频上的 TF 表示(TFR)能量,可以获得更集中、更精确的 TFR。我们的第二个贡献是从新的角度给出了一种更精确的 TFR 信号重构方法。它解决了同步提取变换的重构方法无法扩展到 N 阶的问题。对多分量模拟信号的数值分析表明,GSET 能有效提高强时变信号的 TF 可读性,并能从 TFR 准确地重建信号。此外,实验和应用结果验证了所提出的方法可用于旋转机械的故障诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized synchroextracting transform: Algorithm and applications
Time-frequency (TF) rearrangement methods represented by synchrosqueezing transform (SST) and synchroextracting transform (SET) have recently been considered efficient tools for obtaining time-varying features of nonstationary signals. However, so far improving concentration and accuracy is still an open problem, especially for the signal with strongly time-varying instantaneous frequency (IF), due to the fact that they cannot achieve an accurate and generalized IF estimation. In order to address this problem, we introduce a new TF analysis method termed as generalized synchroextracting transform (GSET) by constructing a general signal model. Our first contribution in this study is proposing a new computational framework to derive the generalized explicit formula of Nth-order IF estimation, which can realize the programming of any order IF. By extracting the energy of the TF representation (TFR) on the estimated IF, a more concentrated and accurate TFR can be obtained. Our second contribution is giving a more accurate signal reconstruction method of the TFR from a new perspective. It solves the problem that the reconstruction method of the synchroextracting transform cannot be extended to the Nth-order. Numerical analysis of multicomponent simulated signal demonstrates that the GSET can effectively improve the TF readability of strongly time-varying signal and accurately reconstruct the signal from the TFR. Moreover, experiment and application results verify that the proposed method can be used for fault diagnosis of rotating machinery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechanical Systems and Signal Processing
Mechanical Systems and Signal Processing 工程技术-工程:机械
CiteScore
14.80
自引率
13.10%
发文量
1183
审稿时长
5.4 months
期刊介绍: Journal Name: Mechanical Systems and Signal Processing (MSSP) Interdisciplinary Focus: Mechanical, Aerospace, and Civil Engineering Purpose:Reporting scientific advancements of the highest quality Arising from new techniques in sensing, instrumentation, signal processing, modelling, and control of dynamic systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信