Ke Yan, Shuaijun Ma, Bin Fang, Fei Chen, Jun Hong, Pan Zhang
{"title":"带柔性滚子的圆柱滚子轴承新动态模型及轴承滑动研究","authors":"Ke Yan, Shuaijun Ma, Bin Fang, Fei Chen, Jun Hong, Pan Zhang","doi":"10.1016/j.ymssp.2024.112133","DOIUrl":null,"url":null,"abstract":"Cylindrical roller bearings are inevitably impacted by external moments or mounting error, which leads to uneven load distribution on the rollers and triggers deformation. Current methods are insufficient to simulate the deformation while ensuring solution accuracy. To address this, a new slicing approach is innovatively proposed in the paper, where springs are added between the neighboring slices to simulate the elastic deformation of the roller under external loads. Compared with the existing methods, the method presented in this paper has the best agreement with the finite element model. On this basis, a dynamic model for cylindrical roller bearing with roller deformation is further developed and verified experimentally. Finally, the sliding behavior inside the bearing under three typical conditions is investigated. A rich spectrum of frequencies emerges in the bearing contact load between the roller and raceway because of the roller deformation. These are all integer multiples of the roller passage frequency. An interesting phenomenon is observed that the sliding velocity is strongly influenced by the orbital speed of the roller compared to its rotational speed. The modeling and analysis in this paper provide new directions to the future work.","PeriodicalId":51124,"journal":{"name":"Mechanical Systems and Signal Processing","volume":"46 1","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new dynamic model for cylindrical roller bearings with flexible rollers and bearing sliding investigation\",\"authors\":\"Ke Yan, Shuaijun Ma, Bin Fang, Fei Chen, Jun Hong, Pan Zhang\",\"doi\":\"10.1016/j.ymssp.2024.112133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cylindrical roller bearings are inevitably impacted by external moments or mounting error, which leads to uneven load distribution on the rollers and triggers deformation. Current methods are insufficient to simulate the deformation while ensuring solution accuracy. To address this, a new slicing approach is innovatively proposed in the paper, where springs are added between the neighboring slices to simulate the elastic deformation of the roller under external loads. Compared with the existing methods, the method presented in this paper has the best agreement with the finite element model. On this basis, a dynamic model for cylindrical roller bearing with roller deformation is further developed and verified experimentally. Finally, the sliding behavior inside the bearing under three typical conditions is investigated. A rich spectrum of frequencies emerges in the bearing contact load between the roller and raceway because of the roller deformation. These are all integer multiples of the roller passage frequency. An interesting phenomenon is observed that the sliding velocity is strongly influenced by the orbital speed of the roller compared to its rotational speed. The modeling and analysis in this paper provide new directions to the future work.\",\"PeriodicalId\":51124,\"journal\":{\"name\":\"Mechanical Systems and Signal Processing\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanical Systems and Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ymssp.2024.112133\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanical Systems and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ymssp.2024.112133","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
A new dynamic model for cylindrical roller bearings with flexible rollers and bearing sliding investigation
Cylindrical roller bearings are inevitably impacted by external moments or mounting error, which leads to uneven load distribution on the rollers and triggers deformation. Current methods are insufficient to simulate the deformation while ensuring solution accuracy. To address this, a new slicing approach is innovatively proposed in the paper, where springs are added between the neighboring slices to simulate the elastic deformation of the roller under external loads. Compared with the existing methods, the method presented in this paper has the best agreement with the finite element model. On this basis, a dynamic model for cylindrical roller bearing with roller deformation is further developed and verified experimentally. Finally, the sliding behavior inside the bearing under three typical conditions is investigated. A rich spectrum of frequencies emerges in the bearing contact load between the roller and raceway because of the roller deformation. These are all integer multiples of the roller passage frequency. An interesting phenomenon is observed that the sliding velocity is strongly influenced by the orbital speed of the roller compared to its rotational speed. The modeling and analysis in this paper provide new directions to the future work.
期刊介绍:
Journal Name: Mechanical Systems and Signal Processing (MSSP)
Interdisciplinary Focus:
Mechanical, Aerospace, and Civil Engineering
Purpose:Reporting scientific advancements of the highest quality
Arising from new techniques in sensing, instrumentation, signal processing, modelling, and control of dynamic systems