Luolong Qing , Zhengzai Cheng , Juan Xu , Ziwei Wang , Yuanyuan Li , Mario Gauthier , Silong Zhang , Huan He
{"title":"含有三环喹唑啉支架的新型强效 SOS1 抑制剂:实验与模拟的共同视角","authors":"Luolong Qing , Zhengzai Cheng , Juan Xu , Ziwei Wang , Yuanyuan Li , Mario Gauthier , Silong Zhang , Huan He","doi":"10.1016/j.ejmech.2024.117065","DOIUrl":null,"url":null,"abstract":"<div><div>Small molecules that possess the ability to regulate the interactions between Son of Sevenless 1 (SOS1) and Kristen rat sarcoma (KRAS) offer immense potential in the realm of cancer therapy. In this study, we present a novel series of SOS1 inhibitors featuring a tricyclic quinazoline scaffold. Notably, we have identified compound <strong>8d</strong>, which demonstrates the highest potency with an IC<sub>50</sub> value of 5.1 nM for disrupting the KRAS:SOS1 interaction. Compound <strong>8d</strong> exhibits a promising pharmacokinetic profile and achieves a remarkable 70.5 % inhibition of tumor growth in pancreas tumor xenograft models. Furthermore, molecular dynamic simulations have unveiled that the tricyclic quinazoline derivatives exhibit extensive interaction with Tyr884, a crucial residue for the recognition between SOS1 and KRAS. Our findings provide fresh insights into the design of future SOS1 inhibitors, paving the way for innovative therapeutic strategies.</div></div>","PeriodicalId":314,"journal":{"name":"European Journal of Medicinal Chemistry","volume":"282 ","pages":"Article 117065"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel potent SOS1 inhibitors containing a tricyclic quinazoline scaffold: A joint view of experiments and simulations\",\"authors\":\"Luolong Qing , Zhengzai Cheng , Juan Xu , Ziwei Wang , Yuanyuan Li , Mario Gauthier , Silong Zhang , Huan He\",\"doi\":\"10.1016/j.ejmech.2024.117065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Small molecules that possess the ability to regulate the interactions between Son of Sevenless 1 (SOS1) and Kristen rat sarcoma (KRAS) offer immense potential in the realm of cancer therapy. In this study, we present a novel series of SOS1 inhibitors featuring a tricyclic quinazoline scaffold. Notably, we have identified compound <strong>8d</strong>, which demonstrates the highest potency with an IC<sub>50</sub> value of 5.1 nM for disrupting the KRAS:SOS1 interaction. Compound <strong>8d</strong> exhibits a promising pharmacokinetic profile and achieves a remarkable 70.5 % inhibition of tumor growth in pancreas tumor xenograft models. Furthermore, molecular dynamic simulations have unveiled that the tricyclic quinazoline derivatives exhibit extensive interaction with Tyr884, a crucial residue for the recognition between SOS1 and KRAS. Our findings provide fresh insights into the design of future SOS1 inhibitors, paving the way for innovative therapeutic strategies.</div></div>\",\"PeriodicalId\":314,\"journal\":{\"name\":\"European Journal of Medicinal Chemistry\",\"volume\":\"282 \",\"pages\":\"Article 117065\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0223523424009474\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0223523424009474","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Novel potent SOS1 inhibitors containing a tricyclic quinazoline scaffold: A joint view of experiments and simulations
Small molecules that possess the ability to regulate the interactions between Son of Sevenless 1 (SOS1) and Kristen rat sarcoma (KRAS) offer immense potential in the realm of cancer therapy. In this study, we present a novel series of SOS1 inhibitors featuring a tricyclic quinazoline scaffold. Notably, we have identified compound 8d, which demonstrates the highest potency with an IC50 value of 5.1 nM for disrupting the KRAS:SOS1 interaction. Compound 8d exhibits a promising pharmacokinetic profile and achieves a remarkable 70.5 % inhibition of tumor growth in pancreas tumor xenograft models. Furthermore, molecular dynamic simulations have unveiled that the tricyclic quinazoline derivatives exhibit extensive interaction with Tyr884, a crucial residue for the recognition between SOS1 and KRAS. Our findings provide fresh insights into the design of future SOS1 inhibitors, paving the way for innovative therapeutic strategies.
期刊介绍:
The European Journal of Medicinal Chemistry is a global journal that publishes studies on all aspects of medicinal chemistry. It provides a medium for publication of original papers and also welcomes critical review papers.
A typical paper would report on the organic synthesis, characterization and pharmacological evaluation of compounds. Other topics of interest are drug design, QSAR, molecular modeling, drug-receptor interactions, molecular aspects of drug metabolism, prodrug synthesis and drug targeting. The journal expects manuscripts to present the rational for a study, provide insight into the design of compounds or understanding of mechanism, or clarify the targets.