Jordan Varma, Isha Farook, Jianxun Cui, Eva Morgenthaler, Caitlin Bien, Tiffany Yu, Dorin Preda, W. John Kidd, David Gamliel, Todd Emrick
{"title":"由羟丙基纤维素构成的生物聚合物泡沫:制造、水稳定性和机械完整性","authors":"Jordan Varma, Isha Farook, Jianxun Cui, Eva Morgenthaler, Caitlin Bien, Tiffany Yu, Dorin Preda, W. John Kidd, David Gamliel, Todd Emrick","doi":"10.1016/j.polymer.2024.127817","DOIUrl":null,"url":null,"abstract":"We describe the fabrication of biopolymer foams formed from aqueous solutions of hydroxypropyl cellulose, whereby freezing-induced phase-separation and solvent removal yields robust foam structures that are elastic in air and when wet, and that are stable to repeated compression when fully saturated with water. Through mechanisms of phase-separation, pore formation, and covalent crosslinking, we discovered effective methods to prepare microporous HPC foams that resist gelation even when exposed to water for long time frames (at least months). Employing multifunctional carboxylic acid crosslinkers allowed the foams to maintain their integrity when dry or wet, while the presence of α-cellulose as an additive further augmented their mechanical integrity and provided a means to adjust elasticity. The amount of crosslinker employed in the foaming process significantly impacted foam stability and water uptake, while polymeric crosslinkers enabled insertion of sulfobetaine zwitterionic moieties into the foams. Notably, the thermal transition characteristic of HPC solutions and gels proved operative in foam form, as seen in release of water from a saturated HPC foam using a combination of compressive and thermal mechanisms.","PeriodicalId":405,"journal":{"name":"Polymer","volume":"169 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biopolymer Foams Composed of Hydroxypropyl Cellulose: Fabrication, Aqueous Stability, and Mechanical Integrity\",\"authors\":\"Jordan Varma, Isha Farook, Jianxun Cui, Eva Morgenthaler, Caitlin Bien, Tiffany Yu, Dorin Preda, W. John Kidd, David Gamliel, Todd Emrick\",\"doi\":\"10.1016/j.polymer.2024.127817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe the fabrication of biopolymer foams formed from aqueous solutions of hydroxypropyl cellulose, whereby freezing-induced phase-separation and solvent removal yields robust foam structures that are elastic in air and when wet, and that are stable to repeated compression when fully saturated with water. Through mechanisms of phase-separation, pore formation, and covalent crosslinking, we discovered effective methods to prepare microporous HPC foams that resist gelation even when exposed to water for long time frames (at least months). Employing multifunctional carboxylic acid crosslinkers allowed the foams to maintain their integrity when dry or wet, while the presence of α-cellulose as an additive further augmented their mechanical integrity and provided a means to adjust elasticity. The amount of crosslinker employed in the foaming process significantly impacted foam stability and water uptake, while polymeric crosslinkers enabled insertion of sulfobetaine zwitterionic moieties into the foams. Notably, the thermal transition characteristic of HPC solutions and gels proved operative in foam form, as seen in release of water from a saturated HPC foam using a combination of compressive and thermal mechanisms.\",\"PeriodicalId\":405,\"journal\":{\"name\":\"Polymer\",\"volume\":\"169 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.polymer.2024.127817\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.polymer.2024.127817","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Biopolymer Foams Composed of Hydroxypropyl Cellulose: Fabrication, Aqueous Stability, and Mechanical Integrity
We describe the fabrication of biopolymer foams formed from aqueous solutions of hydroxypropyl cellulose, whereby freezing-induced phase-separation and solvent removal yields robust foam structures that are elastic in air and when wet, and that are stable to repeated compression when fully saturated with water. Through mechanisms of phase-separation, pore formation, and covalent crosslinking, we discovered effective methods to prepare microporous HPC foams that resist gelation even when exposed to water for long time frames (at least months). Employing multifunctional carboxylic acid crosslinkers allowed the foams to maintain their integrity when dry or wet, while the presence of α-cellulose as an additive further augmented their mechanical integrity and provided a means to adjust elasticity. The amount of crosslinker employed in the foaming process significantly impacted foam stability and water uptake, while polymeric crosslinkers enabled insertion of sulfobetaine zwitterionic moieties into the foams. Notably, the thermal transition characteristic of HPC solutions and gels proved operative in foam form, as seen in release of water from a saturated HPC foam using a combination of compressive and thermal mechanisms.
期刊介绍:
Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics.
The main scope is covered but not limited to the following core areas:
Polymer Materials
Nanocomposites and hybrid nanomaterials
Polymer blends, films, fibres, networks and porous materials
Physical Characterization
Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films
Polymer Engineering
Advanced multiscale processing methods
Polymer Synthesis, Modification and Self-assembly
Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization
Technological Applications
Polymers for energy generation and storage
Polymer membranes for separation technology
Polymers for opto- and microelectronics.