Samson H. Fong, Brent M. Kuenzi, Nicole M. Mattson, John Lee, Kyle Sanchez, Ana Bojorquez-Gomez, Kyle Ford, Brenton P. Munson, Katherine Licon, Sarah Bergendahl, John Paul Shen, Jason F. Kreisberg, Prashant Mali, Jeffrey H. Hager, Michael A. White, Trey Ideker
{"title":"多线程筛选确定人类癌症中可操作的合成致死相互作用","authors":"Samson H. Fong, Brent M. Kuenzi, Nicole M. Mattson, John Lee, Kyle Sanchez, Ana Bojorquez-Gomez, Kyle Ford, Brenton P. Munson, Katherine Licon, Sarah Bergendahl, John Paul Shen, Jason F. Kreisberg, Prashant Mali, Jeffrey H. Hager, Michael A. White, Trey Ideker","doi":"10.1038/s41588-024-01971-9","DOIUrl":null,"url":null,"abstract":"<p>Cancers are driven by alterations in diverse genes, creating dependencies that can be therapeutically targeted. However, many genetic dependencies have proven inconsistent across tumors. Here we describe SCHEMATIC, a strategy to identify a core network of highly penetrant, actionable genetic interactions. First, fundamental cellular processes are perturbed by systematic combinatorial knockouts across tumor lineages, identifying 1,805 synthetic lethal interactions (95% unreported). Interactions are then analyzed by hierarchical pooling, revealing that half segregate reliably by tissue type or biomarker status (51%) and a substantial minority are penetrant across lineages (34%). Interactions converge on 49 multigene systems, including MAPK signaling and BAF transcriptional regulatory complexes, which become essential on disruption of polymerases. Some 266 interactions translate to robust biomarkers of drug sensitivity, including frequent genetic alterations in the KDM5C/6A histone demethylases, which sensitize to inhibition of TIPARP (PARP7). SCHEMATIC offers a context-aware, data-driven approach to match genetic alterations to targeted therapies.</p>","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":null,"pages":null},"PeriodicalIF":31.7000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multilineage screen identifies actionable synthetic lethal interactions in human cancers\",\"authors\":\"Samson H. Fong, Brent M. Kuenzi, Nicole M. Mattson, John Lee, Kyle Sanchez, Ana Bojorquez-Gomez, Kyle Ford, Brenton P. Munson, Katherine Licon, Sarah Bergendahl, John Paul Shen, Jason F. Kreisberg, Prashant Mali, Jeffrey H. Hager, Michael A. White, Trey Ideker\",\"doi\":\"10.1038/s41588-024-01971-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cancers are driven by alterations in diverse genes, creating dependencies that can be therapeutically targeted. However, many genetic dependencies have proven inconsistent across tumors. Here we describe SCHEMATIC, a strategy to identify a core network of highly penetrant, actionable genetic interactions. First, fundamental cellular processes are perturbed by systematic combinatorial knockouts across tumor lineages, identifying 1,805 synthetic lethal interactions (95% unreported). Interactions are then analyzed by hierarchical pooling, revealing that half segregate reliably by tissue type or biomarker status (51%) and a substantial minority are penetrant across lineages (34%). Interactions converge on 49 multigene systems, including MAPK signaling and BAF transcriptional regulatory complexes, which become essential on disruption of polymerases. Some 266 interactions translate to robust biomarkers of drug sensitivity, including frequent genetic alterations in the KDM5C/6A histone demethylases, which sensitize to inhibition of TIPARP (PARP7). SCHEMATIC offers a context-aware, data-driven approach to match genetic alterations to targeted therapies.</p>\",\"PeriodicalId\":18985,\"journal\":{\"name\":\"Nature genetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":31.7000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41588-024-01971-9\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41588-024-01971-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
A multilineage screen identifies actionable synthetic lethal interactions in human cancers
Cancers are driven by alterations in diverse genes, creating dependencies that can be therapeutically targeted. However, many genetic dependencies have proven inconsistent across tumors. Here we describe SCHEMATIC, a strategy to identify a core network of highly penetrant, actionable genetic interactions. First, fundamental cellular processes are perturbed by systematic combinatorial knockouts across tumor lineages, identifying 1,805 synthetic lethal interactions (95% unreported). Interactions are then analyzed by hierarchical pooling, revealing that half segregate reliably by tissue type or biomarker status (51%) and a substantial minority are penetrant across lineages (34%). Interactions converge on 49 multigene systems, including MAPK signaling and BAF transcriptional regulatory complexes, which become essential on disruption of polymerases. Some 266 interactions translate to robust biomarkers of drug sensitivity, including frequent genetic alterations in the KDM5C/6A histone demethylases, which sensitize to inhibition of TIPARP (PARP7). SCHEMATIC offers a context-aware, data-driven approach to match genetic alterations to targeted therapies.
期刊介绍:
Nature Genetics publishes the very highest quality research in genetics. It encompasses genetic and functional genomic studies on human and plant traits and on other model organisms. Current emphasis is on the genetic basis for common and complex diseases and on the functional mechanism, architecture and evolution of gene networks, studied by experimental perturbation.
Integrative genetic topics comprise, but are not limited to:
-Genes in the pathology of human disease
-Molecular analysis of simple and complex genetic traits
-Cancer genetics
-Agricultural genomics
-Developmental genetics
-Regulatory variation in gene expression
-Strategies and technologies for extracting function from genomic data
-Pharmacological genomics
-Genome evolution