非消化性水苏糖与小肠上皮细胞上的膜HSP90β结合以调节外泌体miRNA:一种新的功能和机制

IF 27.7 1区 生物学 Q1 CELL BIOLOGY
Ting Li, Yueyue Liu, Tianchi Duan, Chao Guo, Bin Liu, Xiuqiong Fu, Lu Wang, Xiaoyuan Wang, Xinyue Dong, Chennan Wang, Yalong Lu, Yu Wang, Lin Shi, Honglei Tian, Xingbin Yang
{"title":"非消化性水苏糖与小肠上皮细胞上的膜HSP90β结合以调节外泌体miRNA:一种新的功能和机制","authors":"Ting Li, Yueyue Liu, Tianchi Duan, Chao Guo, Bin Liu, Xiuqiong Fu, Lu Wang, Xiaoyuan Wang, Xinyue Dong, Chennan Wang, Yalong Lu, Yu Wang, Lin Shi, Honglei Tian, Xingbin Yang","doi":"10.1016/j.cmet.2024.10.012","DOIUrl":null,"url":null,"abstract":"Oligosaccharides are conventionally recognized as “passersby” in the small intestine. However, our research has reframed this understanding by uncovering a new function of oligosaccharide stachyose, which binds hydrophobic residues of membranous HSP90β on small intestinal epithelial cells, thus reprograming the exosomal miRNA profile. CRISPR-Cas9-mediated HSP90β knockout abolished the accumulation of stachyose on cell membrane and its regulatory effects on these miRNAs. Notably, stachyose’s regulation on these miRNAs is independent of its prebiotic role, as evidenced by the observation of stachyose-altered fecal miRNAs in pseudo-germ-free mice. These stachyose-altered miRNAs further shaped colonic microbiome, especially harboring <em>Lactobacillus</em> in mice. Thereinto, miR-30a-5p that was downregulated (Log<sub>2</sub>FC &lt; −2) in both mice and human feces following stachyose treatment could specifically suppress the growth of <em>Lactobacillus reuteri</em>. These findings build a new regulatory axis of stachyose-intestinal miRNAs-gut microbiota and unveil a previously unknown mechanism underlying the direct “talk” of oligosaccharides to intestine epithelium via membranous HSP90β.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"10 1","pages":""},"PeriodicalIF":27.7000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nondigestible stachyose binds membranous HSP90β on small intestinal epithelium to regulate the exosomal miRNAs: A new function and mechanism\",\"authors\":\"Ting Li, Yueyue Liu, Tianchi Duan, Chao Guo, Bin Liu, Xiuqiong Fu, Lu Wang, Xiaoyuan Wang, Xinyue Dong, Chennan Wang, Yalong Lu, Yu Wang, Lin Shi, Honglei Tian, Xingbin Yang\",\"doi\":\"10.1016/j.cmet.2024.10.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Oligosaccharides are conventionally recognized as “passersby” in the small intestine. However, our research has reframed this understanding by uncovering a new function of oligosaccharide stachyose, which binds hydrophobic residues of membranous HSP90β on small intestinal epithelial cells, thus reprograming the exosomal miRNA profile. CRISPR-Cas9-mediated HSP90β knockout abolished the accumulation of stachyose on cell membrane and its regulatory effects on these miRNAs. Notably, stachyose’s regulation on these miRNAs is independent of its prebiotic role, as evidenced by the observation of stachyose-altered fecal miRNAs in pseudo-germ-free mice. These stachyose-altered miRNAs further shaped colonic microbiome, especially harboring <em>Lactobacillus</em> in mice. Thereinto, miR-30a-5p that was downregulated (Log<sub>2</sub>FC &lt; −2) in both mice and human feces following stachyose treatment could specifically suppress the growth of <em>Lactobacillus reuteri</em>. These findings build a new regulatory axis of stachyose-intestinal miRNAs-gut microbiota and unveil a previously unknown mechanism underlying the direct “talk” of oligosaccharides to intestine epithelium via membranous HSP90β.\",\"PeriodicalId\":9840,\"journal\":{\"name\":\"Cell metabolism\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":27.7000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell metabolism\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cmet.2024.10.012\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell metabolism","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cmet.2024.10.012","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

低聚糖通常被认为是小肠中的 "过客"。然而,我们的研究通过发现水苏糖低聚糖的新功能,重塑了这一认识。水苏糖低聚糖能与小肠上皮细胞膜HSP90β的疏水残基结合,从而重编程外泌体miRNA谱。CRISPR-Cas9 介导的 HSP90β 基因敲除可消除水苏糖在细胞膜上的积累及其对这些 miRNA 的调控作用。值得注意的是,水苏糖对这些 miRNA 的调控作用与其益生作用无关,这一点可以从假性无胚胎小鼠粪便中水苏糖改变的 miRNAs 观察到。这些水苏糖改变的 miRNA 进一步塑造了小鼠的结肠微生物组,尤其是乳酸杆菌。因此,在水苏糖处理后,小鼠和人类粪便中下调(Log2FC <-2)的miR-30a-5p能特异性地抑制再特异性乳酸杆菌的生长。这些发现构建了水苏糖-肠道 miRNA-肠道微生物群的新调控轴,并揭示了之前未知的低聚糖通过膜 HSP90β 与肠上皮细胞直接 "对话 "的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nondigestible stachyose binds membranous HSP90β on small intestinal epithelium to regulate the exosomal miRNAs: A new function and mechanism

Nondigestible stachyose binds membranous HSP90β on small intestinal epithelium to regulate the exosomal miRNAs: A new function and mechanism
Oligosaccharides are conventionally recognized as “passersby” in the small intestine. However, our research has reframed this understanding by uncovering a new function of oligosaccharide stachyose, which binds hydrophobic residues of membranous HSP90β on small intestinal epithelial cells, thus reprograming the exosomal miRNA profile. CRISPR-Cas9-mediated HSP90β knockout abolished the accumulation of stachyose on cell membrane and its regulatory effects on these miRNAs. Notably, stachyose’s regulation on these miRNAs is independent of its prebiotic role, as evidenced by the observation of stachyose-altered fecal miRNAs in pseudo-germ-free mice. These stachyose-altered miRNAs further shaped colonic microbiome, especially harboring Lactobacillus in mice. Thereinto, miR-30a-5p that was downregulated (Log2FC < −2) in both mice and human feces following stachyose treatment could specifically suppress the growth of Lactobacillus reuteri. These findings build a new regulatory axis of stachyose-intestinal miRNAs-gut microbiota and unveil a previously unknown mechanism underlying the direct “talk” of oligosaccharides to intestine epithelium via membranous HSP90β.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell metabolism
Cell metabolism 生物-内分泌学与代谢
CiteScore
48.60
自引率
1.40%
发文量
173
审稿时长
2.5 months
期刊介绍: Cell Metabolism is a top research journal established in 2005 that focuses on publishing original and impactful papers in the field of metabolic research.It covers a wide range of topics including diabetes, obesity, cardiovascular biology, aging and stress responses, circadian biology, and many others. Cell Metabolism aims to contribute to the advancement of metabolic research by providing a platform for the publication and dissemination of high-quality research and thought-provoking articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信