Weimiao Zhang, Yuan Zhong, Zhan Shen, Ya-Ru Meng, Yang Wang, Bingqing Xu, Jian Su, Gen Zhang
{"title":"基于环辛四硫噻吩的 MOF 衍生多孔材料作为锂离子电池的高性能负极","authors":"Weimiao Zhang, Yuan Zhong, Zhan Shen, Ya-Ru Meng, Yang Wang, Bingqing Xu, Jian Su, Gen Zhang","doi":"10.1016/j.apsusc.2024.161786","DOIUrl":null,"url":null,"abstract":"Extensive research on anodes with higher capacity than carbon-based materials is driven by the great demand for lithium-ion batteries with higher energy density. However, the cycling stability of high-capacity anodes is usually hindered by significant volumetric changes and structural collapse during the cycling process. Metal-organic frameworks (MOFs) are an emerging class of crystalline materials, and their derivatives are expected as alternative high-capacity anodes, resulting from the merits of easy functionalization and pore engineering. In this study, a novel porous Co-MOF-derived composite anode was prepared by the pyrolysis of a nonporous Co-cyclooctatetrathiophene tetrapyridine (Co-COTTTP) template. X-ray absorption spectroscopy and high-resolution transmission electron microscopy revealed that the precise composition of Co-COTTTP-derived composite anodes with exposed rich redox cobalt oxides active sites, appropriate degree of graphitization, and N, S-doping, which effectively enhanced the electrochemical performance of the composite anodes. Thus, the resulting porous MOF-derived composite anode demonstrated high specific capacity and long cycling stability in the assembled batteries. Specifically, the cells assembled with Co-COTTTP-500 anodes delivered a high reversible specific capacity of 1005.7 mAh/g after 100 cycles at 0.1 A/g and can be cycled steady for 800 cycles at 1 A/g, indicating the structure stability during cell operation. In summary, this study provides a feasible strategy to prepare high-performance MOF-derived anodes and deep understanding for the structure–activity relationship, contributing to the fabrication of high-energy–density lithium-ion batteries.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"168 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cyclooctatetrathiophene based MOF-Derived porous materials as High-Performance anode for Lithium-Ion batteries\",\"authors\":\"Weimiao Zhang, Yuan Zhong, Zhan Shen, Ya-Ru Meng, Yang Wang, Bingqing Xu, Jian Su, Gen Zhang\",\"doi\":\"10.1016/j.apsusc.2024.161786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extensive research on anodes with higher capacity than carbon-based materials is driven by the great demand for lithium-ion batteries with higher energy density. However, the cycling stability of high-capacity anodes is usually hindered by significant volumetric changes and structural collapse during the cycling process. Metal-organic frameworks (MOFs) are an emerging class of crystalline materials, and their derivatives are expected as alternative high-capacity anodes, resulting from the merits of easy functionalization and pore engineering. In this study, a novel porous Co-MOF-derived composite anode was prepared by the pyrolysis of a nonporous Co-cyclooctatetrathiophene tetrapyridine (Co-COTTTP) template. X-ray absorption spectroscopy and high-resolution transmission electron microscopy revealed that the precise composition of Co-COTTTP-derived composite anodes with exposed rich redox cobalt oxides active sites, appropriate degree of graphitization, and N, S-doping, which effectively enhanced the electrochemical performance of the composite anodes. Thus, the resulting porous MOF-derived composite anode demonstrated high specific capacity and long cycling stability in the assembled batteries. Specifically, the cells assembled with Co-COTTTP-500 anodes delivered a high reversible specific capacity of 1005.7 mAh/g after 100 cycles at 0.1 A/g and can be cycled steady for 800 cycles at 1 A/g, indicating the structure stability during cell operation. In summary, this study provides a feasible strategy to prepare high-performance MOF-derived anodes and deep understanding for the structure–activity relationship, contributing to the fabrication of high-energy–density lithium-ion batteries.\",\"PeriodicalId\":247,\"journal\":{\"name\":\"Applied Surface Science\",\"volume\":\"168 1\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Surface Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.apsusc.2024.161786\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apsusc.2024.161786","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Cyclooctatetrathiophene based MOF-Derived porous materials as High-Performance anode for Lithium-Ion batteries
Extensive research on anodes with higher capacity than carbon-based materials is driven by the great demand for lithium-ion batteries with higher energy density. However, the cycling stability of high-capacity anodes is usually hindered by significant volumetric changes and structural collapse during the cycling process. Metal-organic frameworks (MOFs) are an emerging class of crystalline materials, and their derivatives are expected as alternative high-capacity anodes, resulting from the merits of easy functionalization and pore engineering. In this study, a novel porous Co-MOF-derived composite anode was prepared by the pyrolysis of a nonporous Co-cyclooctatetrathiophene tetrapyridine (Co-COTTTP) template. X-ray absorption spectroscopy and high-resolution transmission electron microscopy revealed that the precise composition of Co-COTTTP-derived composite anodes with exposed rich redox cobalt oxides active sites, appropriate degree of graphitization, and N, S-doping, which effectively enhanced the electrochemical performance of the composite anodes. Thus, the resulting porous MOF-derived composite anode demonstrated high specific capacity and long cycling stability in the assembled batteries. Specifically, the cells assembled with Co-COTTTP-500 anodes delivered a high reversible specific capacity of 1005.7 mAh/g after 100 cycles at 0.1 A/g and can be cycled steady for 800 cycles at 1 A/g, indicating the structure stability during cell operation. In summary, this study provides a feasible strategy to prepare high-performance MOF-derived anodes and deep understanding for the structure–activity relationship, contributing to the fabrication of high-energy–density lithium-ion batteries.
期刊介绍:
Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.