双梯度主机可实现自下而上的锂沉积,从而实现长寿命的锂离子/金属混合负极

IF 13.3 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Zhicui Song, Chaohui Wei, Jicheng Jiang, Donghuang Wang, Xin Wang, Qijiu Deng, Qiang Zhao, Aijun Zhou, Hong Li, Jingze Li
{"title":"双梯度主机可实现自下而上的锂沉积,从而实现长寿命的锂离子/金属混合负极","authors":"Zhicui Song, Chaohui Wei, Jicheng Jiang, Donghuang Wang, Xin Wang, Qijiu Deng, Qiang Zhao, Aijun Zhou, Hong Li, Jingze Li","doi":"10.1016/j.cej.2024.157755","DOIUrl":null,"url":null,"abstract":"The graphite-based hybrid Li-ion/metal anode holds great promise to be one of the ultimate anode choices, owing to its high specific capacity (often up to 500 mAh/g), obviously superior to 372 mAh/g of the commercial graphite anode. Unfortunately, Li deposition on the top surface of the conductive graphite host can easily drive Li dendrite growth, dead Li accumulation, and the blockage of Li<sup>+</sup> transport pathways, leading to low host space utilization and cycling stability deterioration. Herein, a graphite host with lithiophilicity and reactive activity dual-gradient is constructed by integrating a surface insulation passivation and a bottom lithiophilicity modification to realize the “bottom-up” deposition behavior for hybrid Li-ion/metal anode. The conformal coating layer of electrical insulating and lithiophobic polymer can efficiently retard Li<sup>+</sup> reduction and deposition on the top surface of the conductive host, while the decorated Ag nanoparticles with high lithiophilicity on the host bottom enable much lower Li nucleation barrier, thereby guiding the preferential bottom-up Li deposition. Li dendrite growth is effectively inhibited and the synergistic effects realize high space utilization of the host. Consequently, the hybrid graphite-Li anodes with 600 mAh/g of lithiation capacity (∼3.0 mAh cm<sup>−2</sup>) deliver significantly improved cycling stability over 500 cycles with a negligible capacity fading rate of 0.05 % per cycle at 1 C in LiFePO<sub>4</sub>-based full-cells (N/P ratio = 1.9).","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":null,"pages":null},"PeriodicalIF":13.3000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Double-gradient host enabling bottom-up Li deposition towards hybrid lithium-ion/metal anode with long lifespan\",\"authors\":\"Zhicui Song, Chaohui Wei, Jicheng Jiang, Donghuang Wang, Xin Wang, Qijiu Deng, Qiang Zhao, Aijun Zhou, Hong Li, Jingze Li\",\"doi\":\"10.1016/j.cej.2024.157755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The graphite-based hybrid Li-ion/metal anode holds great promise to be one of the ultimate anode choices, owing to its high specific capacity (often up to 500 mAh/g), obviously superior to 372 mAh/g of the commercial graphite anode. Unfortunately, Li deposition on the top surface of the conductive graphite host can easily drive Li dendrite growth, dead Li accumulation, and the blockage of Li<sup>+</sup> transport pathways, leading to low host space utilization and cycling stability deterioration. Herein, a graphite host with lithiophilicity and reactive activity dual-gradient is constructed by integrating a surface insulation passivation and a bottom lithiophilicity modification to realize the “bottom-up” deposition behavior for hybrid Li-ion/metal anode. The conformal coating layer of electrical insulating and lithiophobic polymer can efficiently retard Li<sup>+</sup> reduction and deposition on the top surface of the conductive host, while the decorated Ag nanoparticles with high lithiophilicity on the host bottom enable much lower Li nucleation barrier, thereby guiding the preferential bottom-up Li deposition. Li dendrite growth is effectively inhibited and the synergistic effects realize high space utilization of the host. Consequently, the hybrid graphite-Li anodes with 600 mAh/g of lithiation capacity (∼3.0 mAh cm<sup>−2</sup>) deliver significantly improved cycling stability over 500 cycles with a negligible capacity fading rate of 0.05 % per cycle at 1 C in LiFePO<sub>4</sub>-based full-cells (N/P ratio = 1.9).\",\"PeriodicalId\":270,\"journal\":{\"name\":\"Chemical Engineering Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":13.3000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cej.2024.157755\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2024.157755","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

石墨基锂离子/金属混合负极具有很高的比容量(通常高达 500 mAh/g),明显优于商用石墨负极的 372 mAh/g,因此有望成为最终的负极选择之一。遗憾的是,锂沉积在导电石墨宿主的顶面很容易导致锂枝晶生长、死锂积累和 Li+ 传输路径堵塞,从而导致宿主空间利用率低和循环稳定性恶化。在此,通过整合表面绝缘钝化和底部亲锂性改性,构建了亲锂性和反应活性双梯度的石墨宿主,实现了锂离子/金属混合负极的 "自下而上 "沉积行为。电绝缘和疏锂聚合物的共形涂层能有效延缓锂+在导电宿主上表面的还原和沉积,而宿主底部具有高亲锂性的银纳米粒子装饰则能大大降低锂成核障碍,从而引导锂自下而上的优先沉积。锂枝晶的生长受到有效抑制,协同效应实现了宿主的高空间利用率。因此,石墨锂混合阳极的锂化容量为 600 mAh/g(∼3.0 mAh cm-2),在以磷酸铁锂为基础的全电池(N/P 比 = 1.9)中,500 个循环周期内的循环稳定性显著提高,每个循环周期的容量衰减率为 0.05%,可以忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Double-gradient host enabling bottom-up Li deposition towards hybrid lithium-ion/metal anode with long lifespan

Double-gradient host enabling bottom-up Li deposition towards hybrid lithium-ion/metal anode with long lifespan
The graphite-based hybrid Li-ion/metal anode holds great promise to be one of the ultimate anode choices, owing to its high specific capacity (often up to 500 mAh/g), obviously superior to 372 mAh/g of the commercial graphite anode. Unfortunately, Li deposition on the top surface of the conductive graphite host can easily drive Li dendrite growth, dead Li accumulation, and the blockage of Li+ transport pathways, leading to low host space utilization and cycling stability deterioration. Herein, a graphite host with lithiophilicity and reactive activity dual-gradient is constructed by integrating a surface insulation passivation and a bottom lithiophilicity modification to realize the “bottom-up” deposition behavior for hybrid Li-ion/metal anode. The conformal coating layer of electrical insulating and lithiophobic polymer can efficiently retard Li+ reduction and deposition on the top surface of the conductive host, while the decorated Ag nanoparticles with high lithiophilicity on the host bottom enable much lower Li nucleation barrier, thereby guiding the preferential bottom-up Li deposition. Li dendrite growth is effectively inhibited and the synergistic effects realize high space utilization of the host. Consequently, the hybrid graphite-Li anodes with 600 mAh/g of lithiation capacity (∼3.0 mAh cm−2) deliver significantly improved cycling stability over 500 cycles with a negligible capacity fading rate of 0.05 % per cycle at 1 C in LiFePO4-based full-cells (N/P ratio = 1.9).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering Journal
Chemical Engineering Journal 工程技术-工程:化工
CiteScore
21.70
自引率
9.30%
发文量
6781
审稿时长
2.4 months
期刊介绍: The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信