利用 DFT、AIMD 和机器学习技术发现作为固态电解质的虚拟 Na 基 Argyrodites

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Kee-Sun Sohn, Byung Do Lee, Deepak S. Gavali, Heejeong Kim, Seonghwan Kim, Min Young Cho, Kyunglim Pyo, Young-Kook Lee, Woon Bae Park
{"title":"利用 DFT、AIMD 和机器学习技术发现作为固态电解质的虚拟 Na 基 Argyrodites","authors":"Kee-Sun Sohn, Byung Do Lee, Deepak S. Gavali, Heejeong Kim, Seonghwan Kim, Min Young Cho, Kyunglim Pyo, Young-Kook Lee, Woon Bae Park","doi":"10.1039/d4ta06927g","DOIUrl":null,"url":null,"abstract":"In surveying an extensive library of 4,375 hypothetical Na-based Argyrodites, we underscore the value of computational screening, noting that no Na-based Argyrodite solid-state electrolyte has been successfully synthesized. We introduce a robust approach using density functional theory (DFT) calculations to identify thermodynamically and electrochemically stable candidates. By evaluating energy above the hull (E<small><sub>h</sub></small>), formation energy (E<small><sub>f</sub></small>), band gap (E<small><sub>g</sub></small>), and electrochemical stability window (V<small><sub>w</sub></small>), we narrow the set to 15 compounds via a 4-dimensional Pareto frontier. Competing materials for E<small><sub>h</sub></small> and V<small><sub>w</sub></small> calculations are sourced from the Materials Project, ICSD, and Google DeepMind. Connectivity-optimized graph networks validate the reliability of our calculations. Ab-initio molecular dynamics (AIMD) calculations assess the room-temperature sodium ion conductivity (σ<small><sub>RT</sub></small>) of the 15 selected entries, ultimately identifying the top 5 with promising σ<small><sub>RT</sub></small>. This discovery of multi-compositional virtual Argyrodites advances the challenge of synthesizing Na-based Argyrodites.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"22 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovering Virtual Na-based Argyrodites as Solid-State Electrolytes Using DFT, AIMD, and Machine Learning Techniques\",\"authors\":\"Kee-Sun Sohn, Byung Do Lee, Deepak S. Gavali, Heejeong Kim, Seonghwan Kim, Min Young Cho, Kyunglim Pyo, Young-Kook Lee, Woon Bae Park\",\"doi\":\"10.1039/d4ta06927g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In surveying an extensive library of 4,375 hypothetical Na-based Argyrodites, we underscore the value of computational screening, noting that no Na-based Argyrodite solid-state electrolyte has been successfully synthesized. We introduce a robust approach using density functional theory (DFT) calculations to identify thermodynamically and electrochemically stable candidates. By evaluating energy above the hull (E<small><sub>h</sub></small>), formation energy (E<small><sub>f</sub></small>), band gap (E<small><sub>g</sub></small>), and electrochemical stability window (V<small><sub>w</sub></small>), we narrow the set to 15 compounds via a 4-dimensional Pareto frontier. Competing materials for E<small><sub>h</sub></small> and V<small><sub>w</sub></small> calculations are sourced from the Materials Project, ICSD, and Google DeepMind. Connectivity-optimized graph networks validate the reliability of our calculations. Ab-initio molecular dynamics (AIMD) calculations assess the room-temperature sodium ion conductivity (σ<small><sub>RT</sub></small>) of the 15 selected entries, ultimately identifying the top 5 with promising σ<small><sub>RT</sub></small>. This discovery of multi-compositional virtual Argyrodites advances the challenge of synthesizing Na-based Argyrodites.\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4ta06927g\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ta06927g","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在对包含 4,375 种假设 Na 基 Argyrodites 的庞大资料库进行调查时,我们强调了计算筛选的价值,并指出目前还没有成功合成任何 Na 基 Argyrodite 固态电解质。我们介绍了一种利用密度泛函理论(DFT)计算来确定热力学和电化学上稳定的候选物质的稳健方法。通过评估壳上能量 (Eh)、形成能 (Ef)、带隙 (Eg) 和电化学稳定性窗口 (Vw),我们通过四维帕累托边界将候选化合物的范围缩小到 15 种。用于 Eh 和 Vw 计算的竞争材料来自材料项目、ICSD 和 Google DeepMind。连接性优化图网络验证了我们计算的可靠性。非线性分子动力学(AIMD)计算评估了 15 个入选条目的室温钠离子电导率(σRT),最终确定了具有良好σRT 的前 5 个条目。这一多成分虚拟氩离子的发现推动了合成钠基氩离子的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discovering Virtual Na-based Argyrodites as Solid-State Electrolytes Using DFT, AIMD, and Machine Learning Techniques
In surveying an extensive library of 4,375 hypothetical Na-based Argyrodites, we underscore the value of computational screening, noting that no Na-based Argyrodite solid-state electrolyte has been successfully synthesized. We introduce a robust approach using density functional theory (DFT) calculations to identify thermodynamically and electrochemically stable candidates. By evaluating energy above the hull (Eh), formation energy (Ef), band gap (Eg), and electrochemical stability window (Vw), we narrow the set to 15 compounds via a 4-dimensional Pareto frontier. Competing materials for Eh and Vw calculations are sourced from the Materials Project, ICSD, and Google DeepMind. Connectivity-optimized graph networks validate the reliability of our calculations. Ab-initio molecular dynamics (AIMD) calculations assess the room-temperature sodium ion conductivity (σRT) of the 15 selected entries, ultimately identifying the top 5 with promising σRT. This discovery of multi-compositional virtual Argyrodites advances the challenge of synthesizing Na-based Argyrodites.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信