{"title":"动态胺分选实现了不对称手性二胺的多选择性构建","authors":"Shoule Cai, Zeyu Zhao, Guoqing Yang, Hanmin Huang","doi":"10.1038/s41557-024-01673-z","DOIUrl":null,"url":null,"abstract":"<p>Precisely differentiating chemicals featuring minor discrepancies is the prerequisite for achieving high selectivities in both chemical synthesis and biological activities. However, efficient strategies to differentiate and sort such congeneric compounds are lacking, posing daunting challenges for synthetic endeavours aimed at their orderly incorporation. Here we report a dynamic amine-sorting strategy that incorporates the chemoselective formation of the aminomethyl cyclopalladated complex to achieve the efficient differentiation of amine congeners. A series of amines sharing similar three-dimensional structures and properties, as well as possessing notoriously strong binding ability to metals, can be efficiently differentiated, enabling the highly chemo-, regio- and enantioselective multicomponent aminomethylamination of dienes to construct a variety of unsymmetrical chiral diamines. This dynamic amine-sorting strategy tackles the long-standing challenge of precise differentiation and orderly incorporation of aliphatic amines with subtle differences. From a broader perspective, the success demonstrates that meticulously designed metal complexes can provide flexible and general solutions for controlling delicate selectivities in sophisticated synthesis.</p><figure></figure>","PeriodicalId":18909,"journal":{"name":"Nature chemistry","volume":"197 1","pages":""},"PeriodicalIF":19.2000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic amine sorting enables multiselective construction of unsymmetrical chiral diamines\",\"authors\":\"Shoule Cai, Zeyu Zhao, Guoqing Yang, Hanmin Huang\",\"doi\":\"10.1038/s41557-024-01673-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Precisely differentiating chemicals featuring minor discrepancies is the prerequisite for achieving high selectivities in both chemical synthesis and biological activities. However, efficient strategies to differentiate and sort such congeneric compounds are lacking, posing daunting challenges for synthetic endeavours aimed at their orderly incorporation. Here we report a dynamic amine-sorting strategy that incorporates the chemoselective formation of the aminomethyl cyclopalladated complex to achieve the efficient differentiation of amine congeners. A series of amines sharing similar three-dimensional structures and properties, as well as possessing notoriously strong binding ability to metals, can be efficiently differentiated, enabling the highly chemo-, regio- and enantioselective multicomponent aminomethylamination of dienes to construct a variety of unsymmetrical chiral diamines. This dynamic amine-sorting strategy tackles the long-standing challenge of precise differentiation and orderly incorporation of aliphatic amines with subtle differences. From a broader perspective, the success demonstrates that meticulously designed metal complexes can provide flexible and general solutions for controlling delicate selectivities in sophisticated synthesis.</p><figure></figure>\",\"PeriodicalId\":18909,\"journal\":{\"name\":\"Nature chemistry\",\"volume\":\"197 1\",\"pages\":\"\"},\"PeriodicalIF\":19.2000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1038/s41557-024-01673-z\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41557-024-01673-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Dynamic amine sorting enables multiselective construction of unsymmetrical chiral diamines
Precisely differentiating chemicals featuring minor discrepancies is the prerequisite for achieving high selectivities in both chemical synthesis and biological activities. However, efficient strategies to differentiate and sort such congeneric compounds are lacking, posing daunting challenges for synthetic endeavours aimed at their orderly incorporation. Here we report a dynamic amine-sorting strategy that incorporates the chemoselective formation of the aminomethyl cyclopalladated complex to achieve the efficient differentiation of amine congeners. A series of amines sharing similar three-dimensional structures and properties, as well as possessing notoriously strong binding ability to metals, can be efficiently differentiated, enabling the highly chemo-, regio- and enantioselective multicomponent aminomethylamination of dienes to construct a variety of unsymmetrical chiral diamines. This dynamic amine-sorting strategy tackles the long-standing challenge of precise differentiation and orderly incorporation of aliphatic amines with subtle differences. From a broader perspective, the success demonstrates that meticulously designed metal complexes can provide flexible and general solutions for controlling delicate selectivities in sophisticated synthesis.
期刊介绍:
Nature Chemistry is a monthly journal that publishes groundbreaking and significant research in all areas of chemistry. It covers traditional subjects such as analytical, inorganic, organic, and physical chemistry, as well as a wide range of other topics including catalysis, computational and theoretical chemistry, and environmental chemistry.
The journal also features interdisciplinary research at the interface of chemistry with biology, materials science, nanotechnology, and physics. Manuscripts detailing such multidisciplinary work are encouraged, as long as the central theme pertains to chemistry.
Aside from primary research, Nature Chemistry publishes review articles, news and views, research highlights from other journals, commentaries, book reviews, correspondence, and analysis of the broader chemical landscape. It also addresses crucial issues related to education, funding, policy, intellectual property, and the societal impact of chemistry.
Nature Chemistry is dedicated to ensuring the highest standards of original research through a fair and rigorous review process. It offers authors maximum visibility for their papers, access to a broad readership, exceptional copy editing and production standards, rapid publication, and independence from academic societies and other vested interests.
Overall, Nature Chemistry aims to be the authoritative voice of the global chemical community.