用于过氧化物太阳能电池的具有隐藏封装功能的 PTAA 注入式薄壁碳纳米管电极

IF 10.7 Q1 CHEMISTRY, PHYSICAL
EcoMat Pub Date : 2024-10-30 DOI:10.1002/eom2.12495
Eun Chong Chae, You-Hyun Seo, Bong Joo Kang, Jin Ho Oh, Yeonsu Jung, Jinho Jang, Taehoon Kim, Yong-Ryun Jo, Dong Jun Kim, Taek-Soo Kim, Sang Hyuk Im, Sae Jin Sung, Seong Sik Shin, Soonil Hong, Nam Joong Jeon
{"title":"用于过氧化物太阳能电池的具有隐藏封装功能的 PTAA 注入式薄壁碳纳米管电极","authors":"Eun Chong Chae,&nbsp;You-Hyun Seo,&nbsp;Bong Joo Kang,&nbsp;Jin Ho Oh,&nbsp;Yeonsu Jung,&nbsp;Jinho Jang,&nbsp;Taehoon Kim,&nbsp;Yong-Ryun Jo,&nbsp;Dong Jun Kim,&nbsp;Taek-Soo Kim,&nbsp;Sang Hyuk Im,&nbsp;Sae Jin Sung,&nbsp;Seong Sik Shin,&nbsp;Soonil Hong,&nbsp;Nam Joong Jeon","doi":"10.1002/eom2.12495","DOIUrl":null,"url":null,"abstract":"<p>In perovskite solar cells (PSCs), expensive gold or silver metal has traditionally been utilized as the rear electrode for highly efficient performance. In this context, carbon nanotube (CNT) electrodes have been considered promising rear electrodes because of their excellent electrical conductivity, mechanical strength, and chemical stability in PSCs. Despite these favorable characteristics, concerns have been raised about the power conversion efficiency (PCE) and stability of PSCs based on CNTs due to the porosity of CNT electrodes. In this study, we employed both poly(triarylamine) (PTAA) infiltration and rear electrode hidden encapsulation approaches to address issues related to the porosity of thin-walled carbon nanotube (TWCNT) electrodes to achieve high efficiency and stability. The infiltration of low-molecular-weight PTAA into the TWCNT electrode reduced electrode porosity while simultaneously improving the interfacial contact of the TWCNT layer with the perovskite layer. Furthermore, a novel encapsulation design was employed to prevent air and water exposure of the TWCNT electrode, which significantly enhanced device stability. PSCs with TWCNT rear electrodes developed on the basis of these strategies have the best PCE of 19.5% and show long-term stability, retaining 96% and 74% of the initial PCE after 225 h at maximum power point tracking under AM 1.5G illumination and 916 h at 85°C/85% relative humidity, respectively.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"6 11","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12495","citationCount":"0","resultStr":"{\"title\":\"PTAA-infiltrated thin-walled carbon nanotube electrode with hidden encapsulation for perovskite solar cells\",\"authors\":\"Eun Chong Chae,&nbsp;You-Hyun Seo,&nbsp;Bong Joo Kang,&nbsp;Jin Ho Oh,&nbsp;Yeonsu Jung,&nbsp;Jinho Jang,&nbsp;Taehoon Kim,&nbsp;Yong-Ryun Jo,&nbsp;Dong Jun Kim,&nbsp;Taek-Soo Kim,&nbsp;Sang Hyuk Im,&nbsp;Sae Jin Sung,&nbsp;Seong Sik Shin,&nbsp;Soonil Hong,&nbsp;Nam Joong Jeon\",\"doi\":\"10.1002/eom2.12495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In perovskite solar cells (PSCs), expensive gold or silver metal has traditionally been utilized as the rear electrode for highly efficient performance. In this context, carbon nanotube (CNT) electrodes have been considered promising rear electrodes because of their excellent electrical conductivity, mechanical strength, and chemical stability in PSCs. Despite these favorable characteristics, concerns have been raised about the power conversion efficiency (PCE) and stability of PSCs based on CNTs due to the porosity of CNT electrodes. In this study, we employed both poly(triarylamine) (PTAA) infiltration and rear electrode hidden encapsulation approaches to address issues related to the porosity of thin-walled carbon nanotube (TWCNT) electrodes to achieve high efficiency and stability. The infiltration of low-molecular-weight PTAA into the TWCNT electrode reduced electrode porosity while simultaneously improving the interfacial contact of the TWCNT layer with the perovskite layer. Furthermore, a novel encapsulation design was employed to prevent air and water exposure of the TWCNT electrode, which significantly enhanced device stability. PSCs with TWCNT rear electrodes developed on the basis of these strategies have the best PCE of 19.5% and show long-term stability, retaining 96% and 74% of the initial PCE after 225 h at maximum power point tracking under AM 1.5G illumination and 916 h at 85°C/85% relative humidity, respectively.</p><p>\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":93174,\"journal\":{\"name\":\"EcoMat\",\"volume\":\"6 11\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12495\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EcoMat\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eom2.12495\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eom2.12495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在过氧化物太阳能电池(PSC)中,传统上使用昂贵的金或银金属作为后电极,以获得高效性能。在这种情况下,碳纳米管(CNT)电极因其在 PSC 中具有出色的导电性、机械强度和化学稳定性,而被认为是很有前途的后电极。尽管具有这些有利特性,但由于碳纳米管电极的多孔性,人们对基于碳纳米管的 PSC 的功率转换效率(PCE)和稳定性表示担忧。在本研究中,我们采用了聚三芳基胺(PTAA)浸润和后电极隐藏封装两种方法来解决与薄壁碳纳米管(TWCNT)电极多孔性有关的问题,以实现高效率和高稳定性。将低分子量的 PTAA 渗入 TWCNT 电极可降低电极孔隙率,同时改善 TWCNT 层与过氧化物层的界面接触。此外,还采用了新颖的封装设计来防止 TWCNT 电极暴露于空气和水中,从而显著提高了器件的稳定性。在这些策略的基础上开发的带有 TWCNT 后电极的 PSC 具有 19.5% 的最佳 PCE,并显示出长期稳定性,在 AM 1.5G 照明下最大功率点跟踪 225 小时和 85°C/85% 相对湿度下 916 小时后,分别保持了初始 PCE 的 96% 和 74%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

PTAA-infiltrated thin-walled carbon nanotube electrode with hidden encapsulation for perovskite solar cells

PTAA-infiltrated thin-walled carbon nanotube electrode with hidden encapsulation for perovskite solar cells

In perovskite solar cells (PSCs), expensive gold or silver metal has traditionally been utilized as the rear electrode for highly efficient performance. In this context, carbon nanotube (CNT) electrodes have been considered promising rear electrodes because of their excellent electrical conductivity, mechanical strength, and chemical stability in PSCs. Despite these favorable characteristics, concerns have been raised about the power conversion efficiency (PCE) and stability of PSCs based on CNTs due to the porosity of CNT electrodes. In this study, we employed both poly(triarylamine) (PTAA) infiltration and rear electrode hidden encapsulation approaches to address issues related to the porosity of thin-walled carbon nanotube (TWCNT) electrodes to achieve high efficiency and stability. The infiltration of low-molecular-weight PTAA into the TWCNT electrode reduced electrode porosity while simultaneously improving the interfacial contact of the TWCNT layer with the perovskite layer. Furthermore, a novel encapsulation design was employed to prevent air and water exposure of the TWCNT electrode, which significantly enhanced device stability. PSCs with TWCNT rear electrodes developed on the basis of these strategies have the best PCE of 19.5% and show long-term stability, retaining 96% and 74% of the initial PCE after 225 h at maximum power point tracking under AM 1.5G illumination and 916 h at 85°C/85% relative humidity, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信