DeepSLM:通过深度对抗学习进行斑点许可调制,实现授权光学加密和解密

IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS
Haofan Huang, Qi Zhao, Huanhao Li, Yuandong Zheng, Zhipeng Yu, Tianting Zhong, Shengfu Cheng, Chi Man Woo, Yi Gao, Honglin Liu, Yuanjin Zheng, Jie Tian, Puxiang Lai
{"title":"DeepSLM:通过深度对抗学习进行斑点许可调制,实现授权光学加密和解密","authors":"Haofan Huang,&nbsp;Qi Zhao,&nbsp;Huanhao Li,&nbsp;Yuandong Zheng,&nbsp;Zhipeng Yu,&nbsp;Tianting Zhong,&nbsp;Shengfu Cheng,&nbsp;Chi Man Woo,&nbsp;Yi Gao,&nbsp;Honglin Liu,&nbsp;Yuanjin Zheng,&nbsp;Jie Tian,&nbsp;Puxiang Lai","doi":"10.1002/aisy.202400150","DOIUrl":null,"url":null,"abstract":"<p>Optical encryption is pivotal in information security, offering parallel processing, speed, and robust security. The simplicity and compatibility of speckle-based cryptosystems have garnered considerable attention. Yet, the predictable statistical distribution of speckle optical fields’ characteristics can invite statistical attacks, undermining these encryption methods. The proposed solution, a deep adversarial learning-based speckle modulation network (DeepSLM), disrupts the strong intercorrelation of speckle grains. Utilizing the unique encoding properties of speckle patterns, DeepSLM facilitates license editing within the modulation phase, pioneering a layered authentication encryption system. Our empirical studies confirm DeepSLM's superior performance on key metrics. Notably, the testing dataset reveals an average Pearson correlation coefficient above 0.97 between decrypted images and their original counterparts for intricate subjects like human faces, attesting to the method's high fidelity. This innovation marries adjustable modification, optical encryption, and deep learning to enforce tiered data access control, charting new paths for creating user-specific access protocols.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"6 11","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400150","citationCount":"0","resultStr":"{\"title\":\"DeepSLM: Speckle-Licensed Modulation via Deep Adversarial Learning for Authorized Optical Encryption and Decryption\",\"authors\":\"Haofan Huang,&nbsp;Qi Zhao,&nbsp;Huanhao Li,&nbsp;Yuandong Zheng,&nbsp;Zhipeng Yu,&nbsp;Tianting Zhong,&nbsp;Shengfu Cheng,&nbsp;Chi Man Woo,&nbsp;Yi Gao,&nbsp;Honglin Liu,&nbsp;Yuanjin Zheng,&nbsp;Jie Tian,&nbsp;Puxiang Lai\",\"doi\":\"10.1002/aisy.202400150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Optical encryption is pivotal in information security, offering parallel processing, speed, and robust security. The simplicity and compatibility of speckle-based cryptosystems have garnered considerable attention. Yet, the predictable statistical distribution of speckle optical fields’ characteristics can invite statistical attacks, undermining these encryption methods. The proposed solution, a deep adversarial learning-based speckle modulation network (DeepSLM), disrupts the strong intercorrelation of speckle grains. Utilizing the unique encoding properties of speckle patterns, DeepSLM facilitates license editing within the modulation phase, pioneering a layered authentication encryption system. Our empirical studies confirm DeepSLM's superior performance on key metrics. Notably, the testing dataset reveals an average Pearson correlation coefficient above 0.97 between decrypted images and their original counterparts for intricate subjects like human faces, attesting to the method's high fidelity. This innovation marries adjustable modification, optical encryption, and deep learning to enforce tiered data access control, charting new paths for creating user-specific access protocols.</p>\",\"PeriodicalId\":93858,\"journal\":{\"name\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"volume\":\"6 11\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400150\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

光学加密在信息安全领域举足轻重,它提供并行处理、速度和强大的安全性。基于斑点的加密系统的简易性和兼容性引起了广泛关注。然而,斑点光场特征的可预测统计分布会招致统计攻击,从而破坏这些加密方法。我们提出的解决方案是基于深度对抗学习的斑点调制网络(DeepSLM),它能破坏斑点颗粒之间的强相互关系。利用斑点纹独特的编码特性,DeepSLM 可在调制阶段进行许可证编辑,开创了分层认证加密系统。我们的实证研究证实了 DeepSLM 在关键指标上的卓越性能。值得注意的是,测试数据集显示,对于人脸等复杂对象,解密图像与原始图像之间的平均皮尔逊相关系数超过 0.97,证明了该方法的高保真性。这项创新将可调整修改、光学加密和深度学习结合起来,实施分级数据访问控制,为创建用户特定访问协议开辟了新的道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

DeepSLM: Speckle-Licensed Modulation via Deep Adversarial Learning for Authorized Optical Encryption and Decryption

DeepSLM: Speckle-Licensed Modulation via Deep Adversarial Learning for Authorized Optical Encryption and Decryption

Optical encryption is pivotal in information security, offering parallel processing, speed, and robust security. The simplicity and compatibility of speckle-based cryptosystems have garnered considerable attention. Yet, the predictable statistical distribution of speckle optical fields’ characteristics can invite statistical attacks, undermining these encryption methods. The proposed solution, a deep adversarial learning-based speckle modulation network (DeepSLM), disrupts the strong intercorrelation of speckle grains. Utilizing the unique encoding properties of speckle patterns, DeepSLM facilitates license editing within the modulation phase, pioneering a layered authentication encryption system. Our empirical studies confirm DeepSLM's superior performance on key metrics. Notably, the testing dataset reveals an average Pearson correlation coefficient above 0.97 between decrypted images and their original counterparts for intricate subjects like human faces, attesting to the method's high fidelity. This innovation marries adjustable modification, optical encryption, and deep learning to enforce tiered data access control, charting new paths for creating user-specific access protocols.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信