{"title":"通过互穿网络实现高性能和卓越愈合效率的无催化剂环氧树脂","authors":"Chenxin Li, Zhengyong Huang, Senyuan Yang, Yingfan Zhang, Chaofan Wang, Jian Li","doi":"10.1002/app.56286","DOIUrl":null,"url":null,"abstract":"<p>The difficult recycling and degradation in cured epoxy resins can be solved by introducing dynamic covalent bonds. However, the introduction of dynamic bonds degrades the properties of epoxy resins. In this paper, the dual-cured epoxy resin with high mechanical properties and high healing efficiency were obtained by constructing interpenetrating networks (IPNs). The effect of IPNs on the recyclability of epoxy resins was investigated. The performance is as follows, the flexural and tensile strengths is 89 and 54.2 MPa, respectively, and the breakdown strength is 32.5 kV/mm. In addition, the recyclability and high healing efficiency of the dual-cured epoxy resin were verified, and the effect of the hot-pressing temperature and time on the properties of the recycled samples were investigated. Under certain hot-pressing conditions, the flexural and tensile strengths of the recycled samples were recovered to 95.06% and 85.28%, respectively, and the breakdown strength was recovered to 83.6%.</p>","PeriodicalId":183,"journal":{"name":"Journal of Applied Polymer Science","volume":"141 48","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Catalyst-free epoxy resins with high-performance and excellent healing efficiency via interpenetrating networks\",\"authors\":\"Chenxin Li, Zhengyong Huang, Senyuan Yang, Yingfan Zhang, Chaofan Wang, Jian Li\",\"doi\":\"10.1002/app.56286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The difficult recycling and degradation in cured epoxy resins can be solved by introducing dynamic covalent bonds. However, the introduction of dynamic bonds degrades the properties of epoxy resins. In this paper, the dual-cured epoxy resin with high mechanical properties and high healing efficiency were obtained by constructing interpenetrating networks (IPNs). The effect of IPNs on the recyclability of epoxy resins was investigated. The performance is as follows, the flexural and tensile strengths is 89 and 54.2 MPa, respectively, and the breakdown strength is 32.5 kV/mm. In addition, the recyclability and high healing efficiency of the dual-cured epoxy resin were verified, and the effect of the hot-pressing temperature and time on the properties of the recycled samples were investigated. Under certain hot-pressing conditions, the flexural and tensile strengths of the recycled samples were recovered to 95.06% and 85.28%, respectively, and the breakdown strength was recovered to 83.6%.</p>\",\"PeriodicalId\":183,\"journal\":{\"name\":\"Journal of Applied Polymer Science\",\"volume\":\"141 48\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/app.56286\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/app.56286","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Catalyst-free epoxy resins with high-performance and excellent healing efficiency via interpenetrating networks
The difficult recycling and degradation in cured epoxy resins can be solved by introducing dynamic covalent bonds. However, the introduction of dynamic bonds degrades the properties of epoxy resins. In this paper, the dual-cured epoxy resin with high mechanical properties and high healing efficiency were obtained by constructing interpenetrating networks (IPNs). The effect of IPNs on the recyclability of epoxy resins was investigated. The performance is as follows, the flexural and tensile strengths is 89 and 54.2 MPa, respectively, and the breakdown strength is 32.5 kV/mm. In addition, the recyclability and high healing efficiency of the dual-cured epoxy resin were verified, and the effect of the hot-pressing temperature and time on the properties of the recycled samples were investigated. Under certain hot-pressing conditions, the flexural and tensile strengths of the recycled samples were recovered to 95.06% and 85.28%, respectively, and the breakdown strength was recovered to 83.6%.
期刊介绍:
The Journal of Applied Polymer Science is the largest peer-reviewed publication in polymers, #3 by total citations, and features results with real-world impact on membranes, polysaccharides, and much more.