{"title":"阿拉伯半岛当地气候和以气团为基础的天气类型趋势","authors":"Ali S. Alghamdi, John Harrington Jr.","doi":"10.1002/joc.8631","DOIUrl":null,"url":null,"abstract":"<p>Although previous research on climate change in the Arabian Peninsula (AP) has studied changes in individual meteorological variables, an analysis of changes in the overall weather conditions based on multiple meteorological variables is limited. Based on an air mass-based classification system, this research explored the local climate (1979–2023) of daily surface weather conditions (i.e., air masses) and associated changes over the Peninsula. For this purpose, the gridded weather typing classification (GWTC-2), an approach to classify multivariate surface weather situations relative to the average local climate, was utilized as it demonstrated outstanding performance in capturing daily weather characteristics in the Peninsula. Cold air mass (C), days with low temperature and near average humidity, was the most common cool weather type, with notable occurrences from Nov to Feb. Warm air mass (W), hot days with near average humidity, was the most common warm weather condition and maintained a marked presence throughout the year, with notable occurrences in summer. Coastal regions showed higher presences of humid warm (HW) and humid (H) days, whereas the central parts demonstrated higher occurrences of air masses of below-average humidity (dry [D], dry cold [DC], and dry warm [DW]). Much of the Peninsula showed high intra-annual variability in cool, warm, humid, and dry air masses. Findings from trend analysis reinforce findings from previous studies related to ongoing warming over the Peninsula, as cool weather types (DC, C, and HC) are becoming less frequent, while warm weather types (W, DW, and HW) are becoming more frequent. This analysis further detected decreases in the average weather conditions along with reduced duration of C-type and increases in the length of warm weather types, further aggravating thermal stress across the AP.</p>","PeriodicalId":13779,"journal":{"name":"International Journal of Climatology","volume":"44 14","pages":"5172-5191"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local climate and trends in air mass-based weather types over the Arabian Peninsula\",\"authors\":\"Ali S. Alghamdi, John Harrington Jr.\",\"doi\":\"10.1002/joc.8631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Although previous research on climate change in the Arabian Peninsula (AP) has studied changes in individual meteorological variables, an analysis of changes in the overall weather conditions based on multiple meteorological variables is limited. Based on an air mass-based classification system, this research explored the local climate (1979–2023) of daily surface weather conditions (i.e., air masses) and associated changes over the Peninsula. For this purpose, the gridded weather typing classification (GWTC-2), an approach to classify multivariate surface weather situations relative to the average local climate, was utilized as it demonstrated outstanding performance in capturing daily weather characteristics in the Peninsula. Cold air mass (C), days with low temperature and near average humidity, was the most common cool weather type, with notable occurrences from Nov to Feb. Warm air mass (W), hot days with near average humidity, was the most common warm weather condition and maintained a marked presence throughout the year, with notable occurrences in summer. Coastal regions showed higher presences of humid warm (HW) and humid (H) days, whereas the central parts demonstrated higher occurrences of air masses of below-average humidity (dry [D], dry cold [DC], and dry warm [DW]). Much of the Peninsula showed high intra-annual variability in cool, warm, humid, and dry air masses. Findings from trend analysis reinforce findings from previous studies related to ongoing warming over the Peninsula, as cool weather types (DC, C, and HC) are becoming less frequent, while warm weather types (W, DW, and HW) are becoming more frequent. This analysis further detected decreases in the average weather conditions along with reduced duration of C-type and increases in the length of warm weather types, further aggravating thermal stress across the AP.</p>\",\"PeriodicalId\":13779,\"journal\":{\"name\":\"International Journal of Climatology\",\"volume\":\"44 14\",\"pages\":\"5172-5191\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Climatology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/joc.8631\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Climatology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/joc.8631","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Local climate and trends in air mass-based weather types over the Arabian Peninsula
Although previous research on climate change in the Arabian Peninsula (AP) has studied changes in individual meteorological variables, an analysis of changes in the overall weather conditions based on multiple meteorological variables is limited. Based on an air mass-based classification system, this research explored the local climate (1979–2023) of daily surface weather conditions (i.e., air masses) and associated changes over the Peninsula. For this purpose, the gridded weather typing classification (GWTC-2), an approach to classify multivariate surface weather situations relative to the average local climate, was utilized as it demonstrated outstanding performance in capturing daily weather characteristics in the Peninsula. Cold air mass (C), days with low temperature and near average humidity, was the most common cool weather type, with notable occurrences from Nov to Feb. Warm air mass (W), hot days with near average humidity, was the most common warm weather condition and maintained a marked presence throughout the year, with notable occurrences in summer. Coastal regions showed higher presences of humid warm (HW) and humid (H) days, whereas the central parts demonstrated higher occurrences of air masses of below-average humidity (dry [D], dry cold [DC], and dry warm [DW]). Much of the Peninsula showed high intra-annual variability in cool, warm, humid, and dry air masses. Findings from trend analysis reinforce findings from previous studies related to ongoing warming over the Peninsula, as cool weather types (DC, C, and HC) are becoming less frequent, while warm weather types (W, DW, and HW) are becoming more frequent. This analysis further detected decreases in the average weather conditions along with reduced duration of C-type and increases in the length of warm weather types, further aggravating thermal stress across the AP.
期刊介绍:
The International Journal of Climatology aims to span the well established but rapidly growing field of climatology, through the publication of research papers, short communications, major reviews of progress and reviews of new books and reports in the area of climate science. The Journal’s main role is to stimulate and report research in climatology, from the expansive fields of the atmospheric, biophysical, engineering and social sciences. Coverage includes: Climate system science; Local to global scale climate observations and modelling; Seasonal to interannual climate prediction; Climatic variability and climate change; Synoptic, dynamic and urban climatology, hydroclimatology, human bioclimatology, ecoclimatology, dendroclimatology, palaeoclimatology, marine climatology and atmosphere-ocean interactions; Application of climatological knowledge to environmental assessment and management and economic production; Climate and society interactions