Perovskite 太阳能电池的机器学习:开源管道

Nicholas Roberts, Dylan Jones, Alex Schuy, Shi-Chieh Hsu, Lih Y. Lin
{"title":"Perovskite 太阳能电池的机器学习:开源管道","authors":"Nicholas Roberts,&nbsp;Dylan Jones,&nbsp;Alex Schuy,&nbsp;Shi-Chieh Hsu,&nbsp;Lih Y. Lin","doi":"10.1002/apxr.202400060","DOIUrl":null,"url":null,"abstract":"<p>Among promising applications of metal-halide perovskite, the most research progress is made for perovskite solar cells (PSCs). Data from myriads of research work enables leveraging machine learning (ML) to significantly expedite material and device optimization as well as potentially design novel configurations. This paper represents one of the first efforts in providing open-source ML tools developed utilizing the Perovskite Database Project (PDP), the most comprehensive open-source PSC database to date with over 43 000 entries from published literature. Three ML model architectures with short-circuit current density (J<sub><i>sc</i></sub>) as a target are trained exploiting the PDP. Using the XGBoost architecture, a root mean squared error (RMSE) of 3.58 <span></span><math></math>, R<sup>2</sup> of 0.35 and a mean absolute percentage error (MAPE) of 9.49% are achieved. This performance is comparable to results reported in literature, and through further investigation can likely be improved. To overcome challenges with manual database creation, an open-source data cleaning pipeline is created for PDP data. Through the creation of these tools, which have been published on GitHub, this research aims to make ML available to aid the design for PSC while showing the already promising performance achieved. The tools can be adapted for other applications, such as perovskite light-emitting diodes (PeLEDs), if a sufficient database is available.</p>","PeriodicalId":100035,"journal":{"name":"Advanced Physics Research","volume":"3 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202400060","citationCount":"0","resultStr":"{\"title\":\"Machine Learning for Perovskite Solar Cells: An Open-Source Pipeline\",\"authors\":\"Nicholas Roberts,&nbsp;Dylan Jones,&nbsp;Alex Schuy,&nbsp;Shi-Chieh Hsu,&nbsp;Lih Y. Lin\",\"doi\":\"10.1002/apxr.202400060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Among promising applications of metal-halide perovskite, the most research progress is made for perovskite solar cells (PSCs). Data from myriads of research work enables leveraging machine learning (ML) to significantly expedite material and device optimization as well as potentially design novel configurations. This paper represents one of the first efforts in providing open-source ML tools developed utilizing the Perovskite Database Project (PDP), the most comprehensive open-source PSC database to date with over 43 000 entries from published literature. Three ML model architectures with short-circuit current density (J<sub><i>sc</i></sub>) as a target are trained exploiting the PDP. Using the XGBoost architecture, a root mean squared error (RMSE) of 3.58 <span></span><math></math>, R<sup>2</sup> of 0.35 and a mean absolute percentage error (MAPE) of 9.49% are achieved. This performance is comparable to results reported in literature, and through further investigation can likely be improved. To overcome challenges with manual database creation, an open-source data cleaning pipeline is created for PDP data. Through the creation of these tools, which have been published on GitHub, this research aims to make ML available to aid the design for PSC while showing the already promising performance achieved. The tools can be adapted for other applications, such as perovskite light-emitting diodes (PeLEDs), if a sufficient database is available.</p>\",\"PeriodicalId\":100035,\"journal\":{\"name\":\"Advanced Physics Research\",\"volume\":\"3 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202400060\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Physics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/apxr.202400060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Physics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/apxr.202400060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在前景广阔的金属卤化物包晶石应用中,包晶石太阳能电池(PSCs)的研究进展最大。来自无数研究工作的数据使得利用机器学习(ML)大大加快了材料和器件优化的速度,并有可能设计出新型配置。本文是利用 Perovskite 数据库项目(PDP)开发的开源 ML 工具的首批成果之一,该项目是迄今为止最全面的开源 PSC 数据库,包含 43000 多个已发表文献条目。以短路电流密度(Jsc)为目标,利用 PDP 训练了三种 ML 模型架构。使用 XGBoost 架构,平均平方根误差 (RMSE) 为 3.58,R2 为 0.35,平均绝对百分比误差 (MAPE) 为 9.49%。这一性能与文献报道的结果不相上下,而且通过进一步的研究还有可能得到改善。为了克服手工创建数据库所带来的挑战,我们为 PDP 数据创建了一个开源数据清理管道。通过创建这些已发布在 GitHub 上的工具,本研究旨在提供 ML,以帮助 PSC 的设计,同时展示已取得的良好性能。如果有足够的数据库,这些工具还可适用于其他应用,例如过氧化物发光二极管(PeLED)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Machine Learning for Perovskite Solar Cells: An Open-Source Pipeline

Machine Learning for Perovskite Solar Cells: An Open-Source Pipeline

Among promising applications of metal-halide perovskite, the most research progress is made for perovskite solar cells (PSCs). Data from myriads of research work enables leveraging machine learning (ML) to significantly expedite material and device optimization as well as potentially design novel configurations. This paper represents one of the first efforts in providing open-source ML tools developed utilizing the Perovskite Database Project (PDP), the most comprehensive open-source PSC database to date with over 43 000 entries from published literature. Three ML model architectures with short-circuit current density (Jsc) as a target are trained exploiting the PDP. Using the XGBoost architecture, a root mean squared error (RMSE) of 3.58 , R2 of 0.35 and a mean absolute percentage error (MAPE) of 9.49% are achieved. This performance is comparable to results reported in literature, and through further investigation can likely be improved. To overcome challenges with manual database creation, an open-source data cleaning pipeline is created for PDP data. Through the creation of these tools, which have been published on GitHub, this research aims to make ML available to aid the design for PSC while showing the already promising performance achieved. The tools can be adapted for other applications, such as perovskite light-emitting diodes (PeLEDs), if a sufficient database is available.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信