Nicholas Roberts, Dylan Jones, Alex Schuy, Shi-Chieh Hsu, Lih Y. Lin
{"title":"Perovskite 太阳能电池的机器学习:开源管道","authors":"Nicholas Roberts, Dylan Jones, Alex Schuy, Shi-Chieh Hsu, Lih Y. Lin","doi":"10.1002/apxr.202400060","DOIUrl":null,"url":null,"abstract":"<p>Among promising applications of metal-halide perovskite, the most research progress is made for perovskite solar cells (PSCs). Data from myriads of research work enables leveraging machine learning (ML) to significantly expedite material and device optimization as well as potentially design novel configurations. This paper represents one of the first efforts in providing open-source ML tools developed utilizing the Perovskite Database Project (PDP), the most comprehensive open-source PSC database to date with over 43 000 entries from published literature. Three ML model architectures with short-circuit current density (J<sub><i>sc</i></sub>) as a target are trained exploiting the PDP. Using the XGBoost architecture, a root mean squared error (RMSE) of 3.58 <span></span><math></math>, R<sup>2</sup> of 0.35 and a mean absolute percentage error (MAPE) of 9.49% are achieved. This performance is comparable to results reported in literature, and through further investigation can likely be improved. To overcome challenges with manual database creation, an open-source data cleaning pipeline is created for PDP data. Through the creation of these tools, which have been published on GitHub, this research aims to make ML available to aid the design for PSC while showing the already promising performance achieved. The tools can be adapted for other applications, such as perovskite light-emitting diodes (PeLEDs), if a sufficient database is available.</p>","PeriodicalId":100035,"journal":{"name":"Advanced Physics Research","volume":"3 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202400060","citationCount":"0","resultStr":"{\"title\":\"Machine Learning for Perovskite Solar Cells: An Open-Source Pipeline\",\"authors\":\"Nicholas Roberts, Dylan Jones, Alex Schuy, Shi-Chieh Hsu, Lih Y. Lin\",\"doi\":\"10.1002/apxr.202400060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Among promising applications of metal-halide perovskite, the most research progress is made for perovskite solar cells (PSCs). Data from myriads of research work enables leveraging machine learning (ML) to significantly expedite material and device optimization as well as potentially design novel configurations. This paper represents one of the first efforts in providing open-source ML tools developed utilizing the Perovskite Database Project (PDP), the most comprehensive open-source PSC database to date with over 43 000 entries from published literature. Three ML model architectures with short-circuit current density (J<sub><i>sc</i></sub>) as a target are trained exploiting the PDP. Using the XGBoost architecture, a root mean squared error (RMSE) of 3.58 <span></span><math></math>, R<sup>2</sup> of 0.35 and a mean absolute percentage error (MAPE) of 9.49% are achieved. This performance is comparable to results reported in literature, and through further investigation can likely be improved. To overcome challenges with manual database creation, an open-source data cleaning pipeline is created for PDP data. Through the creation of these tools, which have been published on GitHub, this research aims to make ML available to aid the design for PSC while showing the already promising performance achieved. The tools can be adapted for other applications, such as perovskite light-emitting diodes (PeLEDs), if a sufficient database is available.</p>\",\"PeriodicalId\":100035,\"journal\":{\"name\":\"Advanced Physics Research\",\"volume\":\"3 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202400060\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Physics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/apxr.202400060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Physics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/apxr.202400060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Machine Learning for Perovskite Solar Cells: An Open-Source Pipeline
Among promising applications of metal-halide perovskite, the most research progress is made for perovskite solar cells (PSCs). Data from myriads of research work enables leveraging machine learning (ML) to significantly expedite material and device optimization as well as potentially design novel configurations. This paper represents one of the first efforts in providing open-source ML tools developed utilizing the Perovskite Database Project (PDP), the most comprehensive open-source PSC database to date with over 43 000 entries from published literature. Three ML model architectures with short-circuit current density (Jsc) as a target are trained exploiting the PDP. Using the XGBoost architecture, a root mean squared error (RMSE) of 3.58 , R2 of 0.35 and a mean absolute percentage error (MAPE) of 9.49% are achieved. This performance is comparable to results reported in literature, and through further investigation can likely be improved. To overcome challenges with manual database creation, an open-source data cleaning pipeline is created for PDP data. Through the creation of these tools, which have been published on GitHub, this research aims to make ML available to aid the design for PSC while showing the already promising performance achieved. The tools can be adapted for other applications, such as perovskite light-emitting diodes (PeLEDs), if a sufficient database is available.