基于氧钒石膜晶体管的尖峰神经网络漏电整合与发射神经元的动态特性

IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS
Sujan Kumar Das, Sanjoy Kumar Nandi, Camilo Verbel Marquez, Armando Rúa, Mutsunori Uenuma, Shimul Kanti Nath, Shuo Zhang, Chun-Ho Lin, Dewei Chu, Tom Ratcliff, Robert Glen Elliman
{"title":"基于氧钒石膜晶体管的尖峰神经网络漏电整合与发射神经元的动态特性","authors":"Sujan Kumar Das,&nbsp;Sanjoy Kumar Nandi,&nbsp;Camilo Verbel Marquez,&nbsp;Armando Rúa,&nbsp;Mutsunori Uenuma,&nbsp;Shimul Kanti Nath,&nbsp;Shuo Zhang,&nbsp;Chun-Ho Lin,&nbsp;Dewei Chu,&nbsp;Tom Ratcliff,&nbsp;Robert Glen Elliman","doi":"10.1002/aisy.202400191","DOIUrl":null,"url":null,"abstract":"<p>\nNeuromorphic computing implemented with spiking neural networks (SNNs) based on volatile threshold switching is an energy-efficient computing paradigm that may overcome future limitations of the von Neumann architecture. Herein, threshold switching in oxyvanite (V<sub>3</sub>O<sub>5</sub>) memristors and their application as a leaky integrate-and-fire (LIF) neuron are explored. The spiking response of individual neurons is examined as a function of circuit parameters, input pulse train, and temperature and reveals a pulse height-dependent spike rate in which devices exhibit excitatory spiking behavior under low input voltages and protective inhibition spiking under high voltages. Resistively coupled LIF neurons are shown to exhibit additional neural functionalities (i.e., phasic, regular and adaptation, etc.) depending on the input voltage and circuit parameters. The behavior of both individual and coupled neurons is shown to be described by a physics-based lumped element circuit model, which therefore provides a solid foundation for exploring more complex systems. Finally, the performance of a perceptron SNN employing these LIF neurons is assessed by simulating the classification of image recognition algorithm. These results advance the development of robust solid-state neurons with low power consumption for neuromorphic computing.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"6 11","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400191","citationCount":"0","resultStr":"{\"title\":\"Dynamics of Leaky Integrate-and-Fire Neurons Based on Oxyvanite Memristors for Spiking Neural Networks\",\"authors\":\"Sujan Kumar Das,&nbsp;Sanjoy Kumar Nandi,&nbsp;Camilo Verbel Marquez,&nbsp;Armando Rúa,&nbsp;Mutsunori Uenuma,&nbsp;Shimul Kanti Nath,&nbsp;Shuo Zhang,&nbsp;Chun-Ho Lin,&nbsp;Dewei Chu,&nbsp;Tom Ratcliff,&nbsp;Robert Glen Elliman\",\"doi\":\"10.1002/aisy.202400191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>\\nNeuromorphic computing implemented with spiking neural networks (SNNs) based on volatile threshold switching is an energy-efficient computing paradigm that may overcome future limitations of the von Neumann architecture. Herein, threshold switching in oxyvanite (V<sub>3</sub>O<sub>5</sub>) memristors and their application as a leaky integrate-and-fire (LIF) neuron are explored. The spiking response of individual neurons is examined as a function of circuit parameters, input pulse train, and temperature and reveals a pulse height-dependent spike rate in which devices exhibit excitatory spiking behavior under low input voltages and protective inhibition spiking under high voltages. Resistively coupled LIF neurons are shown to exhibit additional neural functionalities (i.e., phasic, regular and adaptation, etc.) depending on the input voltage and circuit parameters. The behavior of both individual and coupled neurons is shown to be described by a physics-based lumped element circuit model, which therefore provides a solid foundation for exploring more complex systems. Finally, the performance of a perceptron SNN employing these LIF neurons is assessed by simulating the classification of image recognition algorithm. These results advance the development of robust solid-state neurons with low power consumption for neuromorphic computing.</p>\",\"PeriodicalId\":93858,\"journal\":{\"name\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"volume\":\"6 11\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400191\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

利用基于易失性阈值开关的尖峰神经网络(SNN)实现的神经形态计算是一种高能效计算范例,可以克服冯-诺依曼架构未来的局限性。本文探讨了氧钒合金(V3O5)忆阻器中的阈值开关及其作为泄漏积分发射(LIF)神经元的应用。作为电路参数、输入脉冲序列和温度的函数,对单个神经元的尖峰响应进行了研究,结果发现尖峰率与脉冲高度有关,在低输入电压下,器件表现出兴奋性尖峰行为,而在高电压下则表现出保护性抑制尖峰行为。根据输入电压和电路参数的不同,电阻耦合 LIF 神经元还表现出其他神经功能(如相位、规律和适应等)。研究表明,单个神经元和耦合神经元的行为都可以用基于物理的叠加元件电路模型来描述,从而为探索更复杂的系统奠定了坚实的基础。最后,通过模拟图像识别算法的分类,评估了采用这些 LIF 神经元的感知器 SNN 的性能。这些成果推动了神经形态计算所需的低功耗稳健固态神经元的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dynamics of Leaky Integrate-and-Fire Neurons Based on Oxyvanite Memristors for Spiking Neural Networks

Dynamics of Leaky Integrate-and-Fire Neurons Based on Oxyvanite Memristors for Spiking Neural Networks

Neuromorphic computing implemented with spiking neural networks (SNNs) based on volatile threshold switching is an energy-efficient computing paradigm that may overcome future limitations of the von Neumann architecture. Herein, threshold switching in oxyvanite (V3O5) memristors and their application as a leaky integrate-and-fire (LIF) neuron are explored. The spiking response of individual neurons is examined as a function of circuit parameters, input pulse train, and temperature and reveals a pulse height-dependent spike rate in which devices exhibit excitatory spiking behavior under low input voltages and protective inhibition spiking under high voltages. Resistively coupled LIF neurons are shown to exhibit additional neural functionalities (i.e., phasic, regular and adaptation, etc.) depending on the input voltage and circuit parameters. The behavior of both individual and coupled neurons is shown to be described by a physics-based lumped element circuit model, which therefore provides a solid foundation for exploring more complex systems. Finally, the performance of a perceptron SNN employing these LIF neurons is assessed by simulating the classification of image recognition algorithm. These results advance the development of robust solid-state neurons with low power consumption for neuromorphic computing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信