开发用于增强手部功能的基于挠性的编外机器人手指

IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS
Junmo Yang, Youngrae Kim, Jisu Kim, Seunghyun Lim, Jingon Yoon, Dongwon Yun
{"title":"开发用于增强手部功能的基于挠性的编外机器人手指","authors":"Junmo Yang,&nbsp;Youngrae Kim,&nbsp;Jisu Kim,&nbsp;Seunghyun Lim,&nbsp;Jingon Yoon,&nbsp;Dongwon Yun","doi":"10.1002/aisy.202400131","DOIUrl":null,"url":null,"abstract":"<p>This study introduces a flexure-based supernumerary robotic finger (FBSF) inspired by the proportions of the human thumb, aiming to overcome existing limitations in robotic finger design. In pursuit of seamless cooperation with the user's hand, human finger proportions are replicated. Finite element analysis of all five fingers indicates that the thumb-mimicking configuration offers the largest workspace and bending angle. The FBSF, featuring a polycarbonate paired crossed flexural hinge structure and high impact polystyrene links, closely mirrors the human thumb. Weighing 59 g (main body) and 170 g (control box), the FBSF enables user-driven control and decoupled actuation based on user intent, utilizing the electromyographic signal of the extensor carpi ulnaris via isometric contractions. An experimental protocol, including task blocks (releasing, clenching), confirms the FBSF's responsiveness to user intentions. When utilizing FBSF, it has been verified using a motion capture camera system that it is possible to extend the existing hand workspace by approximately 29.72%. Performance tests demonstrate the FBSF's capability to grasp various objects and assist in tasks, with a maximum load-bearing capacity of 2.6 kg experimentally verified. This study demonstrates the potential of the developed FBSF to augment hand functionality in diverse applications.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"6 11","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400131","citationCount":"0","resultStr":"{\"title\":\"Development of Flexure-Based Supernumerary Robotic Finger for Hand Function Augmentation\",\"authors\":\"Junmo Yang,&nbsp;Youngrae Kim,&nbsp;Jisu Kim,&nbsp;Seunghyun Lim,&nbsp;Jingon Yoon,&nbsp;Dongwon Yun\",\"doi\":\"10.1002/aisy.202400131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study introduces a flexure-based supernumerary robotic finger (FBSF) inspired by the proportions of the human thumb, aiming to overcome existing limitations in robotic finger design. In pursuit of seamless cooperation with the user's hand, human finger proportions are replicated. Finite element analysis of all five fingers indicates that the thumb-mimicking configuration offers the largest workspace and bending angle. The FBSF, featuring a polycarbonate paired crossed flexural hinge structure and high impact polystyrene links, closely mirrors the human thumb. Weighing 59 g (main body) and 170 g (control box), the FBSF enables user-driven control and decoupled actuation based on user intent, utilizing the electromyographic signal of the extensor carpi ulnaris via isometric contractions. An experimental protocol, including task blocks (releasing, clenching), confirms the FBSF's responsiveness to user intentions. When utilizing FBSF, it has been verified using a motion capture camera system that it is possible to extend the existing hand workspace by approximately 29.72%. Performance tests demonstrate the FBSF's capability to grasp various objects and assist in tasks, with a maximum load-bearing capacity of 2.6 kg experimentally verified. This study demonstrates the potential of the developed FBSF to augment hand functionality in diverse applications.</p>\",\"PeriodicalId\":93858,\"journal\":{\"name\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"volume\":\"6 11\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400131\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本研究受人类拇指比例的启发,介绍了一种基于挠曲的编外机器人手指(FBSF),旨在克服现有机器人手指设计的局限性。为了实现与用户手部的无缝配合,该产品复制了人类手指的比例。对所有五根手指的有限元分析表明,模仿拇指的配置提供了最大的工作空间和弯曲角度。FBSF 采用聚碳酸酯配对交叉挠性铰链结构和高抗冲聚苯乙烯链接,与人类的拇指十分相似。FBSF 重量为 59 克(主体)和 170 克(控制盒),可根据用户意图,利用伸拇肌的肌电信号,通过等长收缩实现用户驱动控制和解耦驱动。包括任务块(释放、紧握)在内的实验方案证实了 FBSF 对用户意图的响应能力。使用 FBSF 时,使用动作捕捉摄像系统验证了可以将现有的手部工作空间扩展约 29.72%。性能测试表明,FBSF 能够抓取各种物体并协助完成任务,实验验证的最大承重能力为 2.6 公斤。这项研究证明了所开发的 FBSF 在各种应用中增强手部功能的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Development of Flexure-Based Supernumerary Robotic Finger for Hand Function Augmentation

Development of Flexure-Based Supernumerary Robotic Finger for Hand Function Augmentation

This study introduces a flexure-based supernumerary robotic finger (FBSF) inspired by the proportions of the human thumb, aiming to overcome existing limitations in robotic finger design. In pursuit of seamless cooperation with the user's hand, human finger proportions are replicated. Finite element analysis of all five fingers indicates that the thumb-mimicking configuration offers the largest workspace and bending angle. The FBSF, featuring a polycarbonate paired crossed flexural hinge structure and high impact polystyrene links, closely mirrors the human thumb. Weighing 59 g (main body) and 170 g (control box), the FBSF enables user-driven control and decoupled actuation based on user intent, utilizing the electromyographic signal of the extensor carpi ulnaris via isometric contractions. An experimental protocol, including task blocks (releasing, clenching), confirms the FBSF's responsiveness to user intentions. When utilizing FBSF, it has been verified using a motion capture camera system that it is possible to extend the existing hand workspace by approximately 29.72%. Performance tests demonstrate the FBSF's capability to grasp various objects and assist in tasks, with a maximum load-bearing capacity of 2.6 kg experimentally verified. This study demonstrates the potential of the developed FBSF to augment hand functionality in diverse applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信