设计和优化用于软磁材料磁粉成像的磁场发生器

IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS
Fynn Foerger, Marija Boberg, Jonas Faltinath, Tobias Knopp, Martin Möddel
{"title":"设计和优化用于软磁材料磁粉成像的磁场发生器","authors":"Fynn Foerger,&nbsp;Marija Boberg,&nbsp;Jonas Faltinath,&nbsp;Tobias Knopp,&nbsp;Martin Möddel","doi":"10.1002/aisy.202400017","DOIUrl":null,"url":null,"abstract":"<p>\nMagnetic field generators are a key component of Magnetic Particle Imaging (MPI) systems, and their power consumption is a major obstacle on the path to human-sized scanners. Despite their importance, a focused discussion of these generators is rare, and a comprehensive description of the design process is currently lacking. This work presents a methodology for the design and optimization of selection field generators operating with soft magnetic materials outside the linear regime in the context of MPI. Key elements are a mathematical model of magnetic field generators, a formalism for defining field sequences, and a relationship between power consumption and field sequence. These are used to define the design space of a field generator given its system requirements and constraints. The design process is then formulated as an optimization problem. Subsequently, this methodology is then utilized to design a new magnetic field generator specifically for cerebral imaging studies. The optimization result outperforms our existing MPI field generator in terms of power consumption and field of view size, providing a proof-of-concept for the entire methodology. As the approach is very general, it can be extended beyond the MPI context to other areas such as magnetic manipulation of medical devices and micro-robotics.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"6 11","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400017","citationCount":"0","resultStr":"{\"title\":\"Design and Optimization of a Magnetic Field Generator for Magnetic Particle Imaging with Soft Magnetic Materials\",\"authors\":\"Fynn Foerger,&nbsp;Marija Boberg,&nbsp;Jonas Faltinath,&nbsp;Tobias Knopp,&nbsp;Martin Möddel\",\"doi\":\"10.1002/aisy.202400017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>\\nMagnetic field generators are a key component of Magnetic Particle Imaging (MPI) systems, and their power consumption is a major obstacle on the path to human-sized scanners. Despite their importance, a focused discussion of these generators is rare, and a comprehensive description of the design process is currently lacking. This work presents a methodology for the design and optimization of selection field generators operating with soft magnetic materials outside the linear regime in the context of MPI. Key elements are a mathematical model of magnetic field generators, a formalism for defining field sequences, and a relationship between power consumption and field sequence. These are used to define the design space of a field generator given its system requirements and constraints. The design process is then formulated as an optimization problem. Subsequently, this methodology is then utilized to design a new magnetic field generator specifically for cerebral imaging studies. The optimization result outperforms our existing MPI field generator in terms of power consumption and field of view size, providing a proof-of-concept for the entire methodology. As the approach is very general, it can be extended beyond the MPI context to other areas such as magnetic manipulation of medical devices and micro-robotics.</p>\",\"PeriodicalId\":93858,\"journal\":{\"name\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"volume\":\"6 11\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400017\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

磁场发生器是磁粉成像(MPI)系统的关键部件,其功耗是实现人体尺寸扫描仪的主要障碍。尽管磁场发生器非常重要,但对它们的集中讨论却很少见,目前也缺乏对设计过程的全面描述。这项研究提出了一种方法,用于设计和优化在 MPI 背景下使用线性机制之外的软磁材料运行的选择场发生器。其关键要素包括磁场发生器的数学模型、定义磁场序列的形式主义以及功耗与磁场序列之间的关系。根据系统要求和限制条件,这些内容可用于定义磁场发生器的设计空间。然后将设计过程表述为一个优化问题。随后,利用这种方法设计出一种专门用于脑成像研究的新型磁场发生器。优化结果在功耗和视场大小方面优于我们现有的 MPI 磁场发生器,为整个方法提供了概念验证。由于该方法具有很强的通用性,因此可将其从 MPI 范畴扩展到其他领域,如医疗设备的磁操控和微型机器人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Design and Optimization of a Magnetic Field Generator for Magnetic Particle Imaging with Soft Magnetic Materials

Design and Optimization of a Magnetic Field Generator for Magnetic Particle Imaging with Soft Magnetic Materials

Magnetic field generators are a key component of Magnetic Particle Imaging (MPI) systems, and their power consumption is a major obstacle on the path to human-sized scanners. Despite their importance, a focused discussion of these generators is rare, and a comprehensive description of the design process is currently lacking. This work presents a methodology for the design and optimization of selection field generators operating with soft magnetic materials outside the linear regime in the context of MPI. Key elements are a mathematical model of magnetic field generators, a formalism for defining field sequences, and a relationship between power consumption and field sequence. These are used to define the design space of a field generator given its system requirements and constraints. The design process is then formulated as an optimization problem. Subsequently, this methodology is then utilized to design a new magnetic field generator specifically for cerebral imaging studies. The optimization result outperforms our existing MPI field generator in terms of power consumption and field of view size, providing a proof-of-concept for the entire methodology. As the approach is very general, it can be extended beyond the MPI context to other areas such as magnetic manipulation of medical devices and micro-robotics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信