{"title":"1961-2014 年间人类活动增加了中国上空的复合干旱和高温事件","authors":"Xiaoxin Wang, Xianmei Lang, Dabang Jiang","doi":"10.1002/joc.8625","DOIUrl":null,"url":null,"abstract":"<p>Compared to independent drought or extreme heat events, compound drought and heat events (CDHEs) can pose more adverse impacts on ecosystems and human society. As the anthropogenic influence on CDHEs in China remains largely unquantified, we analyse both observed and simulated changes in the occurrence of CDHEs over China from 1961 to 2014, and perform detection and attribution analyses utilizing an optimal fingerprinting method, based on observations, reanalysis data and numerical experiments from seven Coupled Model Intercomparison Project Phase 6 (CMIP6) models. Upward trends are found in observed CDHEs during 1961–2014 over the majority of China, especially in the last two decades. The increase in CDHEs is largely attributed to human influence. Anthropogenic forcing is detectable in the observed CDHEs changes in the whole China and its eastern region. Furthermore, a three-signal analysis indicates that greenhouse gases play a key role in increasing CDHEs over China, while natural forcing has a negligible effect. Anthropogenic aerosol emissions also play a detectable role in offsetting the greenhouse gas-induced increase of CDHEs over China.</p>","PeriodicalId":13779,"journal":{"name":"International Journal of Climatology","volume":"44 14","pages":"5090-5103"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human activities increased compound drought and heat events over China during 1961–2014\",\"authors\":\"Xiaoxin Wang, Xianmei Lang, Dabang Jiang\",\"doi\":\"10.1002/joc.8625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Compared to independent drought or extreme heat events, compound drought and heat events (CDHEs) can pose more adverse impacts on ecosystems and human society. As the anthropogenic influence on CDHEs in China remains largely unquantified, we analyse both observed and simulated changes in the occurrence of CDHEs over China from 1961 to 2014, and perform detection and attribution analyses utilizing an optimal fingerprinting method, based on observations, reanalysis data and numerical experiments from seven Coupled Model Intercomparison Project Phase 6 (CMIP6) models. Upward trends are found in observed CDHEs during 1961–2014 over the majority of China, especially in the last two decades. The increase in CDHEs is largely attributed to human influence. Anthropogenic forcing is detectable in the observed CDHEs changes in the whole China and its eastern region. Furthermore, a three-signal analysis indicates that greenhouse gases play a key role in increasing CDHEs over China, while natural forcing has a negligible effect. Anthropogenic aerosol emissions also play a detectable role in offsetting the greenhouse gas-induced increase of CDHEs over China.</p>\",\"PeriodicalId\":13779,\"journal\":{\"name\":\"International Journal of Climatology\",\"volume\":\"44 14\",\"pages\":\"5090-5103\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Climatology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/joc.8625\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Climatology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/joc.8625","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Human activities increased compound drought and heat events over China during 1961–2014
Compared to independent drought or extreme heat events, compound drought and heat events (CDHEs) can pose more adverse impacts on ecosystems and human society. As the anthropogenic influence on CDHEs in China remains largely unquantified, we analyse both observed and simulated changes in the occurrence of CDHEs over China from 1961 to 2014, and perform detection and attribution analyses utilizing an optimal fingerprinting method, based on observations, reanalysis data and numerical experiments from seven Coupled Model Intercomparison Project Phase 6 (CMIP6) models. Upward trends are found in observed CDHEs during 1961–2014 over the majority of China, especially in the last two decades. The increase in CDHEs is largely attributed to human influence. Anthropogenic forcing is detectable in the observed CDHEs changes in the whole China and its eastern region. Furthermore, a three-signal analysis indicates that greenhouse gases play a key role in increasing CDHEs over China, while natural forcing has a negligible effect. Anthropogenic aerosol emissions also play a detectable role in offsetting the greenhouse gas-induced increase of CDHEs over China.
期刊介绍:
The International Journal of Climatology aims to span the well established but rapidly growing field of climatology, through the publication of research papers, short communications, major reviews of progress and reviews of new books and reports in the area of climate science. The Journal’s main role is to stimulate and report research in climatology, from the expansive fields of the atmospheric, biophysical, engineering and social sciences. Coverage includes: Climate system science; Local to global scale climate observations and modelling; Seasonal to interannual climate prediction; Climatic variability and climate change; Synoptic, dynamic and urban climatology, hydroclimatology, human bioclimatology, ecoclimatology, dendroclimatology, palaeoclimatology, marine climatology and atmosphere-ocean interactions; Application of climatological knowledge to environmental assessment and management and economic production; Climate and society interactions