Haotian Yang, Ge Chen, Jiaqi Ni, Sebastian Praetz, Delf Kober, Gabriel Cuello, Emiliano Dal Molin, Albert Gili, Christopher Schlesiger, Maged F. Bekheet, Dorian A. H. Hanaor, Aleksander Gurlo
{"title":"多金属聚合物前驱体衍生的高熵尖晶石型氧化物的合成与电化学性能","authors":"Haotian Yang, Ge Chen, Jiaqi Ni, Sebastian Praetz, Delf Kober, Gabriel Cuello, Emiliano Dal Molin, Albert Gili, Christopher Schlesiger, Maged F. Bekheet, Dorian A. H. Hanaor, Aleksander Gurlo","doi":"10.1002/aesr.202400146","DOIUrl":null,"url":null,"abstract":"<p>High-entropy spinel-type oxides are synthesized by a modified Pechini process, wet chemistry approach, and solid-state synthesis method and characterized as anode materials for Li-ion batteries. The Pechini process that involves chelation and polyesterification reactions facilitates the formation of high-entropy spinel-type oxides without compositional segregation at ≈600 °C as confirmed by in situ and ex situ XRD. XAFS analysis and the Rietveld refinement of room-temperature neutron diffraction data suggest the composition (Mn<sub>0.05</sub>Fe<sub>0.48</sub>Co<sub>0.47</sub>, tetrahedral)(Cr<sub>0.61</sub>Mn<sub>0.52</sub>Fe<sub>0.11</sub>Co<sub>0.09</sub>Ni<sub>0.68</sub>, octahedral)O<sub>4</sub> for phase-pure specimens. Compared to high-entropy spinel-type oxides synthesized by the solid-state method, the precursor-derived materials demonstrate higher specific capacity as anodes, in which the materials without citric acid addition exhibit low capacity fading at high current densities and maintained a capacity of ≈200 mAh g<sup>−1</sup> after 1000 cycles. The generation of a rock-salt-type phase during cycling is confirmed for the first time by in situ charging–discharging XRD. The charging–discharging of this anode material is achieved mainly through the embedding–disembedding of lithium ions in the lattice of the generated rock-salt-type phase.</p>","PeriodicalId":29794,"journal":{"name":"Advanced Energy and Sustainability Research","volume":"5 11","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aesr.202400146","citationCount":"0","resultStr":"{\"title\":\"Synthesis and Electrochemical Performance of High-Entropy Spinel-Type Oxides Derived from Multimetallic Polymeric Precursors\",\"authors\":\"Haotian Yang, Ge Chen, Jiaqi Ni, Sebastian Praetz, Delf Kober, Gabriel Cuello, Emiliano Dal Molin, Albert Gili, Christopher Schlesiger, Maged F. Bekheet, Dorian A. H. Hanaor, Aleksander Gurlo\",\"doi\":\"10.1002/aesr.202400146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>High-entropy spinel-type oxides are synthesized by a modified Pechini process, wet chemistry approach, and solid-state synthesis method and characterized as anode materials for Li-ion batteries. The Pechini process that involves chelation and polyesterification reactions facilitates the formation of high-entropy spinel-type oxides without compositional segregation at ≈600 °C as confirmed by in situ and ex situ XRD. XAFS analysis and the Rietveld refinement of room-temperature neutron diffraction data suggest the composition (Mn<sub>0.05</sub>Fe<sub>0.48</sub>Co<sub>0.47</sub>, tetrahedral)(Cr<sub>0.61</sub>Mn<sub>0.52</sub>Fe<sub>0.11</sub>Co<sub>0.09</sub>Ni<sub>0.68</sub>, octahedral)O<sub>4</sub> for phase-pure specimens. Compared to high-entropy spinel-type oxides synthesized by the solid-state method, the precursor-derived materials demonstrate higher specific capacity as anodes, in which the materials without citric acid addition exhibit low capacity fading at high current densities and maintained a capacity of ≈200 mAh g<sup>−1</sup> after 1000 cycles. The generation of a rock-salt-type phase during cycling is confirmed for the first time by in situ charging–discharging XRD. The charging–discharging of this anode material is achieved mainly through the embedding–disembedding of lithium ions in the lattice of the generated rock-salt-type phase.</p>\",\"PeriodicalId\":29794,\"journal\":{\"name\":\"Advanced Energy and Sustainability Research\",\"volume\":\"5 11\",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aesr.202400146\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy and Sustainability Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aesr.202400146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy and Sustainability Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aesr.202400146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
摘要
通过改良的 Pechini 工艺、湿化学方法和固态合成方法合成了高熵尖晶石型氧化物,并将其表征为锂离子电池的负极材料。原位和非原位 XRD 证实,涉及螯合和聚酯化反应的 Pechini 工艺有助于在 ≈600 °C 温度下形成无成分偏析的高熵尖晶石型氧化物。XAFS 分析和室温中子衍射数据的里特维尔德细化表明,相纯试样的成分为 (Mn0.05Fe0.48Co0.47,四面体)(Cr0.61Mn0.52Fe0.11Co0.09Ni0.68,八面体)O4。与固态法合成的高熵尖晶石型氧化物相比,前驱体衍生材料作为阳极表现出更高的比容量,其中未添加柠檬酸的材料在高电流密度下表现出低容量衰减,并在 1000 次循环后保持≈200 mAh g-1 的容量。原位充放电 XRD 首次证实了在循环过程中产生了岩盐类相。这种正极材料的充放电主要是通过锂离子在生成的岩盐型相晶格中的嵌入-脱嵌实现的。
Synthesis and Electrochemical Performance of High-Entropy Spinel-Type Oxides Derived from Multimetallic Polymeric Precursors
High-entropy spinel-type oxides are synthesized by a modified Pechini process, wet chemistry approach, and solid-state synthesis method and characterized as anode materials for Li-ion batteries. The Pechini process that involves chelation and polyesterification reactions facilitates the formation of high-entropy spinel-type oxides without compositional segregation at ≈600 °C as confirmed by in situ and ex situ XRD. XAFS analysis and the Rietveld refinement of room-temperature neutron diffraction data suggest the composition (Mn0.05Fe0.48Co0.47, tetrahedral)(Cr0.61Mn0.52Fe0.11Co0.09Ni0.68, octahedral)O4 for phase-pure specimens. Compared to high-entropy spinel-type oxides synthesized by the solid-state method, the precursor-derived materials demonstrate higher specific capacity as anodes, in which the materials without citric acid addition exhibit low capacity fading at high current densities and maintained a capacity of ≈200 mAh g−1 after 1000 cycles. The generation of a rock-salt-type phase during cycling is confirmed for the first time by in situ charging–discharging XRD. The charging–discharging of this anode material is achieved mainly through the embedding–disembedding of lithium ions in the lattice of the generated rock-salt-type phase.
期刊介绍:
Advanced Energy and Sustainability Research is an open access academic journal that focuses on publishing high-quality peer-reviewed research articles in the areas of energy harvesting, conversion, storage, distribution, applications, ecology, climate change, water and environmental sciences, and related societal impacts. The journal provides readers with free access to influential scientific research that has undergone rigorous peer review, a common feature of all journals in the Advanced series. In addition to original research articles, the journal publishes opinion, editorial and review articles designed to meet the needs of a broad readership interested in energy and sustainability science and related fields.
In addition, Advanced Energy and Sustainability Research is indexed in several abstracting and indexing services, including:
CAS: Chemical Abstracts Service (ACS)
Directory of Open Access Journals (DOAJ)
Emerging Sources Citation Index (Clarivate Analytics)
INSPEC (IET)
Web of Science (Clarivate Analytics).