多金属聚合物前驱体衍生的高熵尖晶石型氧化物的合成与电化学性能

IF 6.2 Q2 ENERGY & FUELS
Haotian Yang, Ge Chen, Jiaqi Ni, Sebastian Praetz, Delf Kober, Gabriel Cuello, Emiliano Dal Molin, Albert Gili, Christopher Schlesiger, Maged F. Bekheet, Dorian A. H. Hanaor, Aleksander Gurlo
{"title":"多金属聚合物前驱体衍生的高熵尖晶石型氧化物的合成与电化学性能","authors":"Haotian Yang,&nbsp;Ge Chen,&nbsp;Jiaqi Ni,&nbsp;Sebastian Praetz,&nbsp;Delf Kober,&nbsp;Gabriel Cuello,&nbsp;Emiliano Dal Molin,&nbsp;Albert Gili,&nbsp;Christopher Schlesiger,&nbsp;Maged F. Bekheet,&nbsp;Dorian A. H. Hanaor,&nbsp;Aleksander Gurlo","doi":"10.1002/aesr.202400146","DOIUrl":null,"url":null,"abstract":"<p>High-entropy spinel-type oxides are synthesized by a modified Pechini process, wet chemistry approach, and solid-state synthesis method and characterized as anode materials for Li-ion batteries. The Pechini process that involves chelation and polyesterification reactions facilitates the formation of high-entropy spinel-type oxides without compositional segregation at ≈600 °C as confirmed by in situ and ex situ XRD. XAFS analysis and the Rietveld refinement of room-temperature neutron diffraction data suggest the composition (Mn<sub>0.05</sub>Fe<sub>0.48</sub>Co<sub>0.47</sub>, tetrahedral)(Cr<sub>0.61</sub>Mn<sub>0.52</sub>Fe<sub>0.11</sub>Co<sub>0.09</sub>Ni<sub>0.68</sub>, octahedral)O<sub>4</sub> for phase-pure specimens. Compared to high-entropy spinel-type oxides synthesized by the solid-state method, the precursor-derived materials demonstrate higher specific capacity as anodes, in which the materials without citric acid addition exhibit low capacity fading at high current densities and maintained a capacity of ≈200 mAh g<sup>−1</sup> after 1000 cycles. The generation of a rock-salt-type phase during cycling is confirmed for the first time by in situ charging–discharging XRD. The charging–discharging of this anode material is achieved mainly through the embedding–disembedding of lithium ions in the lattice of the generated rock-salt-type phase.</p>","PeriodicalId":29794,"journal":{"name":"Advanced Energy and Sustainability Research","volume":"5 11","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aesr.202400146","citationCount":"0","resultStr":"{\"title\":\"Synthesis and Electrochemical Performance of High-Entropy Spinel-Type Oxides Derived from Multimetallic Polymeric Precursors\",\"authors\":\"Haotian Yang,&nbsp;Ge Chen,&nbsp;Jiaqi Ni,&nbsp;Sebastian Praetz,&nbsp;Delf Kober,&nbsp;Gabriel Cuello,&nbsp;Emiliano Dal Molin,&nbsp;Albert Gili,&nbsp;Christopher Schlesiger,&nbsp;Maged F. Bekheet,&nbsp;Dorian A. H. Hanaor,&nbsp;Aleksander Gurlo\",\"doi\":\"10.1002/aesr.202400146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>High-entropy spinel-type oxides are synthesized by a modified Pechini process, wet chemistry approach, and solid-state synthesis method and characterized as anode materials for Li-ion batteries. The Pechini process that involves chelation and polyesterification reactions facilitates the formation of high-entropy spinel-type oxides without compositional segregation at ≈600 °C as confirmed by in situ and ex situ XRD. XAFS analysis and the Rietveld refinement of room-temperature neutron diffraction data suggest the composition (Mn<sub>0.05</sub>Fe<sub>0.48</sub>Co<sub>0.47</sub>, tetrahedral)(Cr<sub>0.61</sub>Mn<sub>0.52</sub>Fe<sub>0.11</sub>Co<sub>0.09</sub>Ni<sub>0.68</sub>, octahedral)O<sub>4</sub> for phase-pure specimens. Compared to high-entropy spinel-type oxides synthesized by the solid-state method, the precursor-derived materials demonstrate higher specific capacity as anodes, in which the materials without citric acid addition exhibit low capacity fading at high current densities and maintained a capacity of ≈200 mAh g<sup>−1</sup> after 1000 cycles. The generation of a rock-salt-type phase during cycling is confirmed for the first time by in situ charging–discharging XRD. The charging–discharging of this anode material is achieved mainly through the embedding–disembedding of lithium ions in the lattice of the generated rock-salt-type phase.</p>\",\"PeriodicalId\":29794,\"journal\":{\"name\":\"Advanced Energy and Sustainability Research\",\"volume\":\"5 11\",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aesr.202400146\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy and Sustainability Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aesr.202400146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy and Sustainability Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aesr.202400146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

通过改良的 Pechini 工艺、湿化学方法和固态合成方法合成了高熵尖晶石型氧化物,并将其表征为锂离子电池的负极材料。原位和非原位 XRD 证实,涉及螯合和聚酯化反应的 Pechini 工艺有助于在 ≈600 °C 温度下形成无成分偏析的高熵尖晶石型氧化物。XAFS 分析和室温中子衍射数据的里特维尔德细化表明,相纯试样的成分为 (Mn0.05Fe0.48Co0.47,四面体)(Cr0.61Mn0.52Fe0.11Co0.09Ni0.68,八面体)O4。与固态法合成的高熵尖晶石型氧化物相比,前驱体衍生材料作为阳极表现出更高的比容量,其中未添加柠檬酸的材料在高电流密度下表现出低容量衰减,并在 1000 次循环后保持≈200 mAh g-1 的容量。原位充放电 XRD 首次证实了在循环过程中产生了岩盐类相。这种正极材料的充放电主要是通过锂离子在生成的岩盐型相晶格中的嵌入-脱嵌实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synthesis and Electrochemical Performance of High-Entropy Spinel-Type Oxides Derived from Multimetallic Polymeric Precursors

Synthesis and Electrochemical Performance of High-Entropy Spinel-Type Oxides Derived from Multimetallic Polymeric Precursors

High-entropy spinel-type oxides are synthesized by a modified Pechini process, wet chemistry approach, and solid-state synthesis method and characterized as anode materials for Li-ion batteries. The Pechini process that involves chelation and polyesterification reactions facilitates the formation of high-entropy spinel-type oxides without compositional segregation at ≈600 °C as confirmed by in situ and ex situ XRD. XAFS analysis and the Rietveld refinement of room-temperature neutron diffraction data suggest the composition (Mn0.05Fe0.48Co0.47, tetrahedral)(Cr0.61Mn0.52Fe0.11Co0.09Ni0.68, octahedral)O4 for phase-pure specimens. Compared to high-entropy spinel-type oxides synthesized by the solid-state method, the precursor-derived materials demonstrate higher specific capacity as anodes, in which the materials without citric acid addition exhibit low capacity fading at high current densities and maintained a capacity of ≈200 mAh g−1 after 1000 cycles. The generation of a rock-salt-type phase during cycling is confirmed for the first time by in situ charging–discharging XRD. The charging–discharging of this anode material is achieved mainly through the embedding–disembedding of lithium ions in the lattice of the generated rock-salt-type phase.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.20
自引率
3.40%
发文量
0
期刊介绍: Advanced Energy and Sustainability Research is an open access academic journal that focuses on publishing high-quality peer-reviewed research articles in the areas of energy harvesting, conversion, storage, distribution, applications, ecology, climate change, water and environmental sciences, and related societal impacts. The journal provides readers with free access to influential scientific research that has undergone rigorous peer review, a common feature of all journals in the Advanced series. In addition to original research articles, the journal publishes opinion, editorial and review articles designed to meet the needs of a broad readership interested in energy and sustainability science and related fields. In addition, Advanced Energy and Sustainability Research is indexed in several abstracting and indexing services, including: CAS: Chemical Abstracts Service (ACS) Directory of Open Access Journals (DOAJ) Emerging Sources Citation Index (Clarivate Analytics) INSPEC (IET) Web of Science (Clarivate Analytics).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信