{"title":"封面外页:第 3 卷第 6 期","authors":"","doi":"10.1002/idm2.12230","DOIUrl":null,"url":null,"abstract":"<p><b>Outside Front Cover</b>: The study in doi:10.1002/idm2.12212 reports a novel design of onedimensional (1D) Pt–Pd dendritic nanotubular heterostructures (DTHs). The Pt–Pd bimetallic DTHs catalyst shown in the image exhibited uniform dense Pt dendritic nanobranches on the surface of 1D hollow Pt–Pd alloy nanotubes, possessing superior catalytic activity for ORR compared to the state-of-the-art commercial Pt/C catalysts. The Pt-Pd bimetallic DTHs configuration combines the advantages of 1D hollow nanostructures and dense Pt dendritic nanobranches, which results in rich electrochemical active surface sites, fast charge transport, and multiple dendritic anchoring points contact on carbon support, thus boosting its catalytic activity and stability towards electrocatalysis.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 6","pages":"i"},"PeriodicalIF":24.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12230","citationCount":"0","resultStr":"{\"title\":\"Outside Front Cover: Volume 3 Issue 6\",\"authors\":\"\",\"doi\":\"10.1002/idm2.12230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Outside Front Cover</b>: The study in doi:10.1002/idm2.12212 reports a novel design of onedimensional (1D) Pt–Pd dendritic nanotubular heterostructures (DTHs). The Pt–Pd bimetallic DTHs catalyst shown in the image exhibited uniform dense Pt dendritic nanobranches on the surface of 1D hollow Pt–Pd alloy nanotubes, possessing superior catalytic activity for ORR compared to the state-of-the-art commercial Pt/C catalysts. The Pt-Pd bimetallic DTHs configuration combines the advantages of 1D hollow nanostructures and dense Pt dendritic nanobranches, which results in rich electrochemical active surface sites, fast charge transport, and multiple dendritic anchoring points contact on carbon support, thus boosting its catalytic activity and stability towards electrocatalysis.\\n\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":100685,\"journal\":{\"name\":\"Interdisciplinary Materials\",\"volume\":\"3 6\",\"pages\":\"i\"},\"PeriodicalIF\":24.5000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12230\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/idm2.12230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Materials","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/idm2.12230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Outside Front Cover: The study in doi:10.1002/idm2.12212 reports a novel design of onedimensional (1D) Pt–Pd dendritic nanotubular heterostructures (DTHs). The Pt–Pd bimetallic DTHs catalyst shown in the image exhibited uniform dense Pt dendritic nanobranches on the surface of 1D hollow Pt–Pd alloy nanotubes, possessing superior catalytic activity for ORR compared to the state-of-the-art commercial Pt/C catalysts. The Pt-Pd bimetallic DTHs configuration combines the advantages of 1D hollow nanostructures and dense Pt dendritic nanobranches, which results in rich electrochemical active surface sites, fast charge transport, and multiple dendritic anchoring points contact on carbon support, thus boosting its catalytic activity and stability towards electrocatalysis.