{"title":"评估区域、区域气候模式和全球气候模式对包括约旦在内的重叠区域 CORDEX 模拟不确定性的单独贡献","authors":"Hebah Alkhasoneh, Clinton Rowe","doi":"10.1002/joc.8620","DOIUrl":null,"url":null,"abstract":"<p>The Coordinated Regional Downscaling Experiment (CORDEX) offers a framework for regional climate downscaling experiments over continental-based domains that overlap; this allows for conducting multimodel analysis. However, a question is raised about the uncertainty due to domain selection. This study aims to evaluate the sensitivity of CORDEX simulations to the choices of domain, downscaling regional climate model (RCM) and driving global model (GCM) over a Middle East study region, including Jordan. Understanding these sensitivities helps assess simulation uncertainties and enhance regional climate change projections. Taylor diagrams and variance decomposition analyses were used to analyse seasonal temperature and precipitation climatologies. The results indicate that the domain contribution to variance is negligible, whereas the choice of GCM and RCM strongly influences simulations. Variance in temperature is significantly impacted by the driving model (GCM), whereas RCM has a higher influence on precipitation, which reflects their large-scale versus local nature. The results of this study support the development of multidomain ensembles since projections produced by the same GCM–RCM model combination are consistent across different overlapping domains. On the other hand, this approach facilitates the consideration as well as a comprehensive quantification of the uncertainties arising from the utilization of multiple GCMs and RCMs within such an ensemble. This improves the reliability of regional climate information, thus facilitating the development of effective adaptation strategies and mitigation plans.</p>","PeriodicalId":13779,"journal":{"name":"International Journal of Climatology","volume":"44 14","pages":"5009-5027"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/joc.8620","citationCount":"0","resultStr":"{\"title\":\"Assessing the separate contribution of the domain, RCM and GCM to the uncertainty in CORDEX simulations over the overlapped regions that include Jordan\",\"authors\":\"Hebah Alkhasoneh, Clinton Rowe\",\"doi\":\"10.1002/joc.8620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Coordinated Regional Downscaling Experiment (CORDEX) offers a framework for regional climate downscaling experiments over continental-based domains that overlap; this allows for conducting multimodel analysis. However, a question is raised about the uncertainty due to domain selection. This study aims to evaluate the sensitivity of CORDEX simulations to the choices of domain, downscaling regional climate model (RCM) and driving global model (GCM) over a Middle East study region, including Jordan. Understanding these sensitivities helps assess simulation uncertainties and enhance regional climate change projections. Taylor diagrams and variance decomposition analyses were used to analyse seasonal temperature and precipitation climatologies. The results indicate that the domain contribution to variance is negligible, whereas the choice of GCM and RCM strongly influences simulations. Variance in temperature is significantly impacted by the driving model (GCM), whereas RCM has a higher influence on precipitation, which reflects their large-scale versus local nature. The results of this study support the development of multidomain ensembles since projections produced by the same GCM–RCM model combination are consistent across different overlapping domains. On the other hand, this approach facilitates the consideration as well as a comprehensive quantification of the uncertainties arising from the utilization of multiple GCMs and RCMs within such an ensemble. This improves the reliability of regional climate information, thus facilitating the development of effective adaptation strategies and mitigation plans.</p>\",\"PeriodicalId\":13779,\"journal\":{\"name\":\"International Journal of Climatology\",\"volume\":\"44 14\",\"pages\":\"5009-5027\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/joc.8620\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Climatology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/joc.8620\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Climatology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/joc.8620","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Assessing the separate contribution of the domain, RCM and GCM to the uncertainty in CORDEX simulations over the overlapped regions that include Jordan
The Coordinated Regional Downscaling Experiment (CORDEX) offers a framework for regional climate downscaling experiments over continental-based domains that overlap; this allows for conducting multimodel analysis. However, a question is raised about the uncertainty due to domain selection. This study aims to evaluate the sensitivity of CORDEX simulations to the choices of domain, downscaling regional climate model (RCM) and driving global model (GCM) over a Middle East study region, including Jordan. Understanding these sensitivities helps assess simulation uncertainties and enhance regional climate change projections. Taylor diagrams and variance decomposition analyses were used to analyse seasonal temperature and precipitation climatologies. The results indicate that the domain contribution to variance is negligible, whereas the choice of GCM and RCM strongly influences simulations. Variance in temperature is significantly impacted by the driving model (GCM), whereas RCM has a higher influence on precipitation, which reflects their large-scale versus local nature. The results of this study support the development of multidomain ensembles since projections produced by the same GCM–RCM model combination are consistent across different overlapping domains. On the other hand, this approach facilitates the consideration as well as a comprehensive quantification of the uncertainties arising from the utilization of multiple GCMs and RCMs within such an ensemble. This improves the reliability of regional climate information, thus facilitating the development of effective adaptation strategies and mitigation plans.
期刊介绍:
The International Journal of Climatology aims to span the well established but rapidly growing field of climatology, through the publication of research papers, short communications, major reviews of progress and reviews of new books and reports in the area of climate science. The Journal’s main role is to stimulate and report research in climatology, from the expansive fields of the atmospheric, biophysical, engineering and social sciences. Coverage includes: Climate system science; Local to global scale climate observations and modelling; Seasonal to interannual climate prediction; Climatic variability and climate change; Synoptic, dynamic and urban climatology, hydroclimatology, human bioclimatology, ecoclimatology, dendroclimatology, palaeoclimatology, marine climatology and atmosphere-ocean interactions; Application of climatological knowledge to environmental assessment and management and economic production; Climate and society interactions