{"title":"基于表面粗糙度和残余应力的铝硅镁复合材料疲劳寿命预测","authors":"Lea Strauß, Genny A. Pang, Günther Löwisch","doi":"10.1111/ffe.14441","DOIUrl":null,"url":null,"abstract":"<p>Laser-based powder bed fusion (PBF-LB) has gained prominence in the realm of additive manufacturing of metals. This technique utilizes a laser beam to consolidate powder layers, which inherently introduces high thermal gradients and rapid cooling rates. This results in characteristic process effects, including inhomogeneities, surface roughness, anisotropy, and residual stress, which play a pivotal role in altering the fatigue properties of the manufactured components. This paper presents fatigue tests involving samples of AlSi10Mg manufactured using PBF-LB with varying surface roughness and residual stress. An approach to predict fatigue life based on stress amplitude, residual stress, and crack size is presented, using a smooth sample as a reference. An empirical model for fatigue life prediction is developed from experimentally measured values of fatigue life, peak surface roughness, and residual stress.</p>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"47 12","pages":"4465-4477"},"PeriodicalIF":3.1000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ffe.14441","citationCount":"0","resultStr":"{\"title\":\"Fatigue life prediction of additively manufactured AlSi10Mg based on surface roughness and residual stress\",\"authors\":\"Lea Strauß, Genny A. Pang, Günther Löwisch\",\"doi\":\"10.1111/ffe.14441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Laser-based powder bed fusion (PBF-LB) has gained prominence in the realm of additive manufacturing of metals. This technique utilizes a laser beam to consolidate powder layers, which inherently introduces high thermal gradients and rapid cooling rates. This results in characteristic process effects, including inhomogeneities, surface roughness, anisotropy, and residual stress, which play a pivotal role in altering the fatigue properties of the manufactured components. This paper presents fatigue tests involving samples of AlSi10Mg manufactured using PBF-LB with varying surface roughness and residual stress. An approach to predict fatigue life based on stress amplitude, residual stress, and crack size is presented, using a smooth sample as a reference. An empirical model for fatigue life prediction is developed from experimentally measured values of fatigue life, peak surface roughness, and residual stress.</p>\",\"PeriodicalId\":12298,\"journal\":{\"name\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"volume\":\"47 12\",\"pages\":\"4465-4477\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ffe.14441\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14441\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14441","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Fatigue life prediction of additively manufactured AlSi10Mg based on surface roughness and residual stress
Laser-based powder bed fusion (PBF-LB) has gained prominence in the realm of additive manufacturing of metals. This technique utilizes a laser beam to consolidate powder layers, which inherently introduces high thermal gradients and rapid cooling rates. This results in characteristic process effects, including inhomogeneities, surface roughness, anisotropy, and residual stress, which play a pivotal role in altering the fatigue properties of the manufactured components. This paper presents fatigue tests involving samples of AlSi10Mg manufactured using PBF-LB with varying surface roughness and residual stress. An approach to predict fatigue life based on stress amplitude, residual stress, and crack size is presented, using a smooth sample as a reference. An empirical model for fatigue life prediction is developed from experimentally measured values of fatigue life, peak surface roughness, and residual stress.
期刊介绍:
Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.