Ikuto Yoshiki, Prof. Atsushi Takagaki, Dr. Jun Tae Song, Prof. Motonori Watanabe, Prof. Tatsumi Ishihara
{"title":"封面:使用固体基催化剂将纤维生物糖转化为甲酸,作为生物质衍生的可再生氢源(ChemistryOpen 11/2024)","authors":"Ikuto Yoshiki, Prof. Atsushi Takagaki, Dr. Jun Tae Song, Prof. Motonori Watanabe, Prof. Tatsumi Ishihara","doi":"10.1002/open.202481101","DOIUrl":null,"url":null,"abstract":"<p><b>The Front Cover shows</b> selective production of formic acid from cellobiose, a disaccharide from cellulose, using solid base catalysts in the presence of hydrogen peroxide as an environmentally benign oxidizing agent. Calcium oxide and magnesium oxide are found to afford formic acid at 343 K for 2 h. A combination of Amberlyst-15 as a solid acid and MgO as a solid base allows for a high formic acid yield of 33% under mild reaction conditions. More information can be found in the Research Article by Atsushi Takagaki, Tatsumi Ishihara, and co-workers (DOI: 10.1002/open.202400079).<figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure>\n </p>","PeriodicalId":9831,"journal":{"name":"ChemistryOpen","volume":"13 11","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/open.202481101","citationCount":"0","resultStr":"{\"title\":\"Front Cover: Conversion of Cellobiose to Formic Acid as a Biomass-Derived Renewable Hydrogen Source Using Solid Base Catalysts (ChemistryOpen 11/2024)\",\"authors\":\"Ikuto Yoshiki, Prof. Atsushi Takagaki, Dr. Jun Tae Song, Prof. Motonori Watanabe, Prof. Tatsumi Ishihara\",\"doi\":\"10.1002/open.202481101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>The Front Cover shows</b> selective production of formic acid from cellobiose, a disaccharide from cellulose, using solid base catalysts in the presence of hydrogen peroxide as an environmentally benign oxidizing agent. Calcium oxide and magnesium oxide are found to afford formic acid at 343 K for 2 h. A combination of Amberlyst-15 as a solid acid and MgO as a solid base allows for a high formic acid yield of 33% under mild reaction conditions. More information can be found in the Research Article by Atsushi Takagaki, Tatsumi Ishihara, and co-workers (DOI: 10.1002/open.202400079).<figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure>\\n </p>\",\"PeriodicalId\":9831,\"journal\":{\"name\":\"ChemistryOpen\",\"volume\":\"13 11\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/open.202481101\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemistryOpen\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/open.202481101\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistryOpen","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/open.202481101","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Front Cover: Conversion of Cellobiose to Formic Acid as a Biomass-Derived Renewable Hydrogen Source Using Solid Base Catalysts (ChemistryOpen 11/2024)
The Front Cover shows selective production of formic acid from cellobiose, a disaccharide from cellulose, using solid base catalysts in the presence of hydrogen peroxide as an environmentally benign oxidizing agent. Calcium oxide and magnesium oxide are found to afford formic acid at 343 K for 2 h. A combination of Amberlyst-15 as a solid acid and MgO as a solid base allows for a high formic acid yield of 33% under mild reaction conditions. More information can be found in the Research Article by Atsushi Takagaki, Tatsumi Ishihara, and co-workers (DOI: 10.1002/open.202400079).
期刊介绍:
ChemistryOpen is a multidisciplinary, gold-road open-access, international forum for the publication of outstanding Reviews, Full Papers, and Communications from all areas of chemistry and related fields. It is co-owned by 16 continental European Chemical Societies, who have banded together in the alliance called ChemPubSoc Europe for the purpose of publishing high-quality journals in the field of chemistry and its border disciplines. As some of the governments of the countries represented in ChemPubSoc Europe have strongly recommended that the research conducted with their funding is freely accessible for all readers (Open Access), ChemPubSoc Europe was concerned that no journal for which the ethical standards were monitored by a chemical society was available for such papers. ChemistryOpen fills this gap.