用于高性能神经形态计算的基于六方氮化硼的阿托焦耳晶体管(Small 45/2024)

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2024-11-07 DOI:10.1002/smll.202470328
Jiye Kim, Jaesub Song, Hyunjoung Kwak, Chang-Won Choi, Kyungmi Noh, Seokho Moon, Hyeonwoong Hwang, Inyong Hwang, Hokyeong Jeong, Si-Young Choi, Seyoung Kim, Jong Kyu Kim
{"title":"用于高性能神经形态计算的基于六方氮化硼的阿托焦耳晶体管(Small 45/2024)","authors":"Jiye Kim,&nbsp;Jaesub Song,&nbsp;Hyunjoung Kwak,&nbsp;Chang-Won Choi,&nbsp;Kyungmi Noh,&nbsp;Seokho Moon,&nbsp;Hyeonwoong Hwang,&nbsp;Inyong Hwang,&nbsp;Hokyeong Jeong,&nbsp;Si-Young Choi,&nbsp;Seyoung Kim,&nbsp;Jong Kyu Kim","doi":"10.1002/smll.202470328","DOIUrl":null,"url":null,"abstract":"<p><b>Neuromorphic Computing</b></p><p>In article number 2403737, Jong Kyu Kim and co-workers present a two-dimensional hexagonal boron nitride based memristor with a metal-insulator-semiconductor configuration, specifically designed for energy-efficient neuromorphic applications operating at attojoule levels. This breakthrough has the potential to revolutionize energy usage in neuromorphic systems, bridging the gap in energy efficiency between artificial and biological synapses.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":228,"journal":{"name":"Small","volume":"20 45","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/smll.202470328","citationCount":"0","resultStr":"{\"title\":\"Attojoule Hexagonal Boron Nitride-Based Memristor for High-Performance Neuromorphic Computing (Small 45/2024)\",\"authors\":\"Jiye Kim,&nbsp;Jaesub Song,&nbsp;Hyunjoung Kwak,&nbsp;Chang-Won Choi,&nbsp;Kyungmi Noh,&nbsp;Seokho Moon,&nbsp;Hyeonwoong Hwang,&nbsp;Inyong Hwang,&nbsp;Hokyeong Jeong,&nbsp;Si-Young Choi,&nbsp;Seyoung Kim,&nbsp;Jong Kyu Kim\",\"doi\":\"10.1002/smll.202470328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Neuromorphic Computing</b></p><p>In article number 2403737, Jong Kyu Kim and co-workers present a two-dimensional hexagonal boron nitride based memristor with a metal-insulator-semiconductor configuration, specifically designed for energy-efficient neuromorphic applications operating at attojoule levels. This breakthrough has the potential to revolutionize energy usage in neuromorphic systems, bridging the gap in energy efficiency between artificial and biological synapses.\\n\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"20 45\",\"pages\":\"\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/smll.202470328\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202470328\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202470328","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

神经形态计算在文章编号 2403737 中,Jong Kyu Kim 及其合作者介绍了一种基于二维六边形氮化硼的忆阻器,它具有金属-绝缘体-半导体结构,专门设计用于在阿托焦耳级运行的高能效神经形态应用。这一突破有望彻底改变神经形态系统的能源使用,缩小人工突触与生物突触之间的能效差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Attojoule Hexagonal Boron Nitride-Based Memristor for High-Performance Neuromorphic Computing (Small 45/2024)

Attojoule Hexagonal Boron Nitride-Based Memristor for High-Performance Neuromorphic Computing (Small 45/2024)

Neuromorphic Computing

In article number 2403737, Jong Kyu Kim and co-workers present a two-dimensional hexagonal boron nitride based memristor with a metal-insulator-semiconductor configuration, specifically designed for energy-efficient neuromorphic applications operating at attojoule levels. This breakthrough has the potential to revolutionize energy usage in neuromorphic systems, bridging the gap in energy efficiency between artificial and biological synapses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信