通过神经嵌入的集合学习降低多维结构化和非结构化数据集的维度

IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS
Juan Carlos Alvarado-Pérez, Miguel Angel Garcia, Domenec Puig
{"title":"通过神经嵌入的集合学习降低多维结构化和非结构化数据集的维度","authors":"Juan Carlos Alvarado-Pérez,&nbsp;Miguel Angel Garcia,&nbsp;Domenec Puig","doi":"10.1002/aisy.202400178","DOIUrl":null,"url":null,"abstract":"<p>Dimension reduction aims to project a high-dimensional dataset into a low-dimensional space. It tries to preserve the topological relationships among the original data points and/or induce clusters. NetDRm, an online dimensionality reduction method based on neural ensemble learning that integrates different dimension reduction methods in a synergistic way, is introduced. NetDRm is designed for datasets of multidimensional points that can be either structured (e.g., images) or unstructured (e.g., point clouds, tabular data). It starts by training a collection of deep residual encoders that learn the embeddings induced by multiple dimension reduction methods applied to the input dataset. Subsequently, a dense neural network integrates the generated encoders by emphasizing topological preservation or cluster induction. Experiments conducted on widely used multidimensional datasets (point-cloud manifolds, image datasets, tabular record datasets) show that the proposed method yields better results in terms of topological preservation (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>R</mi>\n <mrow>\n <mtext>NX</mtext>\n </mrow>\n </msub>\n </mrow>\n <annotation>$R_{\\text{NX}}$</annotation>\n </semantics></math> curves), cluster induction (<i>V</i> measure), and classification accuracy than the most relevant dimension reduction methods.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"6 11","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400178","citationCount":"0","resultStr":"{\"title\":\"Dimension Reduction of Multidimensional Structured and Unstructured Datasets through Ensemble Learning of Neural Embeddings\",\"authors\":\"Juan Carlos Alvarado-Pérez,&nbsp;Miguel Angel Garcia,&nbsp;Domenec Puig\",\"doi\":\"10.1002/aisy.202400178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Dimension reduction aims to project a high-dimensional dataset into a low-dimensional space. It tries to preserve the topological relationships among the original data points and/or induce clusters. NetDRm, an online dimensionality reduction method based on neural ensemble learning that integrates different dimension reduction methods in a synergistic way, is introduced. NetDRm is designed for datasets of multidimensional points that can be either structured (e.g., images) or unstructured (e.g., point clouds, tabular data). It starts by training a collection of deep residual encoders that learn the embeddings induced by multiple dimension reduction methods applied to the input dataset. Subsequently, a dense neural network integrates the generated encoders by emphasizing topological preservation or cluster induction. Experiments conducted on widely used multidimensional datasets (point-cloud manifolds, image datasets, tabular record datasets) show that the proposed method yields better results in terms of topological preservation (<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>R</mi>\\n <mrow>\\n <mtext>NX</mtext>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$R_{\\\\text{NX}}$</annotation>\\n </semantics></math> curves), cluster induction (<i>V</i> measure), and classification accuracy than the most relevant dimension reduction methods.</p>\",\"PeriodicalId\":93858,\"journal\":{\"name\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"volume\":\"6 11\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400178\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

降维旨在将高维数据集投射到低维空间中。它试图保留原始数据点之间的拓扑关系和/或诱导聚类。NetDRm 是一种基于神经集合学习的在线降维方法,它以协同的方式整合了不同的降维方法。NetDRm 专为结构化(如图像)或非结构化(如点云、表格数据)的多维点数据集而设计。它首先要训练一组深度残差编码器,学习应用于输入数据集的多种降维方法所引起的嵌入。随后,密集神经网络通过强调拓扑保存或聚类归纳来整合生成的编码器。在广泛使用的多维数据集(点云流形、图像数据集、表格记录数据集)上进行的实验表明,与最相关的降维方法相比,所提出的方法在拓扑保持(R NX $R_{text\{NX}}$ 曲线)、聚类诱导(V 测量)和分类准确性方面都能产生更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dimension Reduction of Multidimensional Structured and Unstructured Datasets through Ensemble Learning of Neural Embeddings

Dimension Reduction of Multidimensional Structured and Unstructured Datasets through Ensemble Learning of Neural Embeddings

Dimension reduction aims to project a high-dimensional dataset into a low-dimensional space. It tries to preserve the topological relationships among the original data points and/or induce clusters. NetDRm, an online dimensionality reduction method based on neural ensemble learning that integrates different dimension reduction methods in a synergistic way, is introduced. NetDRm is designed for datasets of multidimensional points that can be either structured (e.g., images) or unstructured (e.g., point clouds, tabular data). It starts by training a collection of deep residual encoders that learn the embeddings induced by multiple dimension reduction methods applied to the input dataset. Subsequently, a dense neural network integrates the generated encoders by emphasizing topological preservation or cluster induction. Experiments conducted on widely used multidimensional datasets (point-cloud manifolds, image datasets, tabular record datasets) show that the proposed method yields better results in terms of topological preservation ( R NX $R_{\text{NX}}$ curves), cluster induction (V measure), and classification accuracy than the most relevant dimension reduction methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信