Svenja Ryan, Caroline C. Ummenhofer, Glen G. Gawarkiewicz
{"title":"美国东北部大陆架的季节性和年际盐度变化:卫星海表盐度的启示及对分层的影响","authors":"Svenja Ryan, Caroline C. Ummenhofer, Glen G. Gawarkiewicz","doi":"10.1029/2024JC021534","DOIUrl":null,"url":null,"abstract":"<p>The Northeast U.S. continental shelf (NEUS) is a highly productive and economically important region that has undergone substantial changes in recent years. Warming exceeds the global average and several episodes of anomalously warm, sustained temperatures have had profound impacts on regional fisheries. A majority of recent research studies focused on the analysis of temperature; however, salinity can serve as a valuable tracer as well. With now more than a decade of remote-sensing sea surface salinity data, we shed new light onto salinity variability in the region with focus on the Mid-Atlantic Bight and assess its role for modulating stratification on the shelf using historical hydrographic data. Local river discharge drives decreasing salinities not only in spring and summer on the shelf but also in the Slope Sea. In spring, fresher water aids the build-up of stratification and a low salinity surface layer extends to the shelf break above the pycnocline by the beginning of summer. An observed salinification in the fall is linked to offshore forcing over the slope associated with the presence of Warm Core Rings. Coherent low-frequency salinity variability is found over the slope and shelf, highlighting that shelf conditions are significantly impacted by offshore variability. Conditions on the NEUS in 2015 were characterized by anomalously high salinities, associated with a northerly position of the Gulf Stream. A freshening between 2015 and 2021, is in agreement with increased river cumulative discharge as well as lower offshore salinities. Overall, salinity serves as a valuable additional tracer of these multi-variate processes.</p>","PeriodicalId":54340,"journal":{"name":"Journal of Geophysical Research-Oceans","volume":"129 11","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seasonal and Interannual Salinity Variability on the Northeast U.S. Continental Shelf: Insights From Satellite Sea Surface Salinity and Implications for Stratification\",\"authors\":\"Svenja Ryan, Caroline C. Ummenhofer, Glen G. Gawarkiewicz\",\"doi\":\"10.1029/2024JC021534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Northeast U.S. continental shelf (NEUS) is a highly productive and economically important region that has undergone substantial changes in recent years. Warming exceeds the global average and several episodes of anomalously warm, sustained temperatures have had profound impacts on regional fisheries. A majority of recent research studies focused on the analysis of temperature; however, salinity can serve as a valuable tracer as well. With now more than a decade of remote-sensing sea surface salinity data, we shed new light onto salinity variability in the region with focus on the Mid-Atlantic Bight and assess its role for modulating stratification on the shelf using historical hydrographic data. Local river discharge drives decreasing salinities not only in spring and summer on the shelf but also in the Slope Sea. In spring, fresher water aids the build-up of stratification and a low salinity surface layer extends to the shelf break above the pycnocline by the beginning of summer. An observed salinification in the fall is linked to offshore forcing over the slope associated with the presence of Warm Core Rings. Coherent low-frequency salinity variability is found over the slope and shelf, highlighting that shelf conditions are significantly impacted by offshore variability. Conditions on the NEUS in 2015 were characterized by anomalously high salinities, associated with a northerly position of the Gulf Stream. A freshening between 2015 and 2021, is in agreement with increased river cumulative discharge as well as lower offshore salinities. Overall, salinity serves as a valuable additional tracer of these multi-variate processes.</p>\",\"PeriodicalId\":54340,\"journal\":{\"name\":\"Journal of Geophysical Research-Oceans\",\"volume\":\"129 11\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research-Oceans\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JC021534\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research-Oceans","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JC021534","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
Seasonal and Interannual Salinity Variability on the Northeast U.S. Continental Shelf: Insights From Satellite Sea Surface Salinity and Implications for Stratification
The Northeast U.S. continental shelf (NEUS) is a highly productive and economically important region that has undergone substantial changes in recent years. Warming exceeds the global average and several episodes of anomalously warm, sustained temperatures have had profound impacts on regional fisheries. A majority of recent research studies focused on the analysis of temperature; however, salinity can serve as a valuable tracer as well. With now more than a decade of remote-sensing sea surface salinity data, we shed new light onto salinity variability in the region with focus on the Mid-Atlantic Bight and assess its role for modulating stratification on the shelf using historical hydrographic data. Local river discharge drives decreasing salinities not only in spring and summer on the shelf but also in the Slope Sea. In spring, fresher water aids the build-up of stratification and a low salinity surface layer extends to the shelf break above the pycnocline by the beginning of summer. An observed salinification in the fall is linked to offshore forcing over the slope associated with the presence of Warm Core Rings. Coherent low-frequency salinity variability is found over the slope and shelf, highlighting that shelf conditions are significantly impacted by offshore variability. Conditions on the NEUS in 2015 were characterized by anomalously high salinities, associated with a northerly position of the Gulf Stream. A freshening between 2015 and 2021, is in agreement with increased river cumulative discharge as well as lower offshore salinities. Overall, salinity serves as a valuable additional tracer of these multi-variate processes.