时空主题建模揭示风暴驱动的平流和搅拌控制着开阔洋涡流中浮游生物群落的变化

IF 3.3 2区 地球科学 Q1 OCEANOGRAPHY
John E. San Soucie, Yogesh Girdhar, Leah Johnson, Emily E. Peacock, Alexi Shalapyonok, Heidi M. Sosik
{"title":"时空主题建模揭示风暴驱动的平流和搅拌控制着开阔洋涡流中浮游生物群落的变化","authors":"John E. San Soucie,&nbsp;Yogesh Girdhar,&nbsp;Leah Johnson,&nbsp;Emily E. Peacock,&nbsp;Alexi Shalapyonok,&nbsp;Heidi M. Sosik","doi":"10.1029/2024JC020907","DOIUrl":null,"url":null,"abstract":"<p>Phytoplankton communities in the open ocean are high-dimensional, sparse, and spatiotemporally heterogeneous. The advent of automated imaging systems has enabled high-resolution observation of these communities, but the amounts of data and their statistical properties make analysis with traditional approaches challenging. Spatiotemporal topic models offer an unsupervised and interpretable approach to dimensionality reduction of sparse, high-dimensional categorical data. Here we use topic modeling to analyze neural-network-classified phytoplankton imagery taken in and around a retentive eddy during the 2021 North Atlantic EXport Processes in the Ocean from Remote Sensing (EXPORTS) field campaign. We investigate the role physical-biological interactions play in altering plankton community composition within the eddy. Analysis of a water mass mixing framework suggests that storm-driven surface advection and stirring were major drivers of the progression of the eddy plankton community away from a diatom bloom over the course of the cruise.</p>","PeriodicalId":54340,"journal":{"name":"Journal of Geophysical Research-Oceans","volume":"129 11","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JC020907","citationCount":"0","resultStr":"{\"title\":\"Spatiotemporal Topic Modeling Reveals Storm-Driven Advection and Stirring Control Plankton Community Variability in an Open Ocean Eddy\",\"authors\":\"John E. San Soucie,&nbsp;Yogesh Girdhar,&nbsp;Leah Johnson,&nbsp;Emily E. Peacock,&nbsp;Alexi Shalapyonok,&nbsp;Heidi M. Sosik\",\"doi\":\"10.1029/2024JC020907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Phytoplankton communities in the open ocean are high-dimensional, sparse, and spatiotemporally heterogeneous. The advent of automated imaging systems has enabled high-resolution observation of these communities, but the amounts of data and their statistical properties make analysis with traditional approaches challenging. Spatiotemporal topic models offer an unsupervised and interpretable approach to dimensionality reduction of sparse, high-dimensional categorical data. Here we use topic modeling to analyze neural-network-classified phytoplankton imagery taken in and around a retentive eddy during the 2021 North Atlantic EXport Processes in the Ocean from Remote Sensing (EXPORTS) field campaign. We investigate the role physical-biological interactions play in altering plankton community composition within the eddy. Analysis of a water mass mixing framework suggests that storm-driven surface advection and stirring were major drivers of the progression of the eddy plankton community away from a diatom bloom over the course of the cruise.</p>\",\"PeriodicalId\":54340,\"journal\":{\"name\":\"Journal of Geophysical Research-Oceans\",\"volume\":\"129 11\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JC020907\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research-Oceans\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JC020907\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research-Oceans","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JC020907","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

摘要

开阔海洋中的浮游植物群落具有高维、稀疏和时空异质性等特点。自动成像系统的出现实现了对这些群落的高分辨率观测,但数据量及其统计特性使传统的分析方法面临挑战。时空主题模型为稀疏、高维分类数据的降维提供了一种无监督、可解释的方法。在此,我们利用主题模型分析了在 2021 年北大西洋海洋遥感过程(EXPORTS)实地考察活动中在一个潴留涡内和周围拍摄的神经网络分类浮游植物图像。我们研究了物理-生物相互作用在改变漩涡内浮游生物群落组成中所起的作用。对水团混合框架的分析表明,风暴驱动的表面平流和搅拌是漩涡浮游生物群落在巡航过程中脱离硅藻大量繁殖的主要驱动力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatiotemporal Topic Modeling Reveals Storm-Driven Advection and Stirring Control Plankton Community Variability in an Open Ocean Eddy

Phytoplankton communities in the open ocean are high-dimensional, sparse, and spatiotemporally heterogeneous. The advent of automated imaging systems has enabled high-resolution observation of these communities, but the amounts of data and their statistical properties make analysis with traditional approaches challenging. Spatiotemporal topic models offer an unsupervised and interpretable approach to dimensionality reduction of sparse, high-dimensional categorical data. Here we use topic modeling to analyze neural-network-classified phytoplankton imagery taken in and around a retentive eddy during the 2021 North Atlantic EXport Processes in the Ocean from Remote Sensing (EXPORTS) field campaign. We investigate the role physical-biological interactions play in altering plankton community composition within the eddy. Analysis of a water mass mixing framework suggests that storm-driven surface advection and stirring were major drivers of the progression of the eddy plankton community away from a diatom bloom over the course of the cruise.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research-Oceans
Journal of Geophysical Research-Oceans Earth and Planetary Sciences-Oceanography
CiteScore
7.00
自引率
13.90%
发文量
429
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信