Arebat Ryad Alhadei Mohamed, Mohd Mustafa Awang Kechik, Chen Soo Kien, Lim Kean Pah, Hussien Baqiah, Khairul Khaizi Mohd Shariff, Yap Siew Hong, Hoo Keong Peh, Abdul Halim Shaari, Syahrul Humaidi, Muralidhar Miryala
{"title":"通过添加 Nd2O3 增强改良热分解法制备的 YBa2Cu3O7- ẟ 的超导特性","authors":"Arebat Ryad Alhadei Mohamed, Mohd Mustafa Awang Kechik, Chen Soo Kien, Lim Kean Pah, Hussien Baqiah, Khairul Khaizi Mohd Shariff, Yap Siew Hong, Hoo Keong Peh, Abdul Halim Shaari, Syahrul Humaidi, Muralidhar Miryala","doi":"10.1007/s00339-024-08035-z","DOIUrl":null,"url":null,"abstract":"<div><p>Polycrystalline YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7−δ</sub> (Y-123) samples with different varying weight percentages (x = 0.0, 0.1, 0.3, 0.5, 1.0, and 5.0 wt.%) of neodymium oxide (Nd<sub>2</sub>O<sub>3</sub>) addition have been successfully synthesized using a modified thermal decomposition method (DM) under ambient conditions. X-ray diffraction (XRD) analysis revealed favorable orthorhombicity values (~ 0.008) for the Y-123 crystal structure, and an estimated oxygen content close to the theoretical value (~ 6.8), along with the presence of light secondary phases such as Y<sub>2</sub>BaCuO<sub>5</sub> (Y-211) and BaCuO<sub>2</sub>. For FESEM analysis, it was found that 5.0 wt.% Nd<sub>2</sub>O<sub>3</sub> increased porosity and reduced grain size, negatively impacting superconductivity. Conversely, 0.5 wt.% Nd<sub>2</sub>O<sub>3</sub> promoted significant grain growth, leading to enhanced grain contact and a denser microstructure. Electrical resistivity measurements confirmed superconducting transitions in all samples. Notably, the 0.5 wt.% Nd<sub>2</sub>O<sub>3</sub> sample exhibited an optimal <i>T</i><sub><i>c-onset</i></sub> of 94.14 K with a narrow transition width Δ<i>T</i><sub><i>c</i></sub> of 4.04 K. In contrast, the higher 5.0 wt.% Nd<sub>2</sub>O<sub>3</sub> concentration resulted in a broader Δ<i>T</i><sub><i>c</i></sub> of 7.47 K, suggesting the lower doping provided more optimal superconducting performance. AC susceptibility measurements corroborated these findings. This DM method offers a cost-effective approach for Y-123 synthesis, with potential for further optimization through alkali metal doping to reduce costs and environmental impact.</p></div>","PeriodicalId":473,"journal":{"name":"Applied Physics A","volume":"130 12","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing superconducting properties of YBa2Cu3O7- ẟ through Nd2O3 addition prepared using modified thermal decomposition method\",\"authors\":\"Arebat Ryad Alhadei Mohamed, Mohd Mustafa Awang Kechik, Chen Soo Kien, Lim Kean Pah, Hussien Baqiah, Khairul Khaizi Mohd Shariff, Yap Siew Hong, Hoo Keong Peh, Abdul Halim Shaari, Syahrul Humaidi, Muralidhar Miryala\",\"doi\":\"10.1007/s00339-024-08035-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Polycrystalline YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7−δ</sub> (Y-123) samples with different varying weight percentages (x = 0.0, 0.1, 0.3, 0.5, 1.0, and 5.0 wt.%) of neodymium oxide (Nd<sub>2</sub>O<sub>3</sub>) addition have been successfully synthesized using a modified thermal decomposition method (DM) under ambient conditions. X-ray diffraction (XRD) analysis revealed favorable orthorhombicity values (~ 0.008) for the Y-123 crystal structure, and an estimated oxygen content close to the theoretical value (~ 6.8), along with the presence of light secondary phases such as Y<sub>2</sub>BaCuO<sub>5</sub> (Y-211) and BaCuO<sub>2</sub>. For FESEM analysis, it was found that 5.0 wt.% Nd<sub>2</sub>O<sub>3</sub> increased porosity and reduced grain size, negatively impacting superconductivity. Conversely, 0.5 wt.% Nd<sub>2</sub>O<sub>3</sub> promoted significant grain growth, leading to enhanced grain contact and a denser microstructure. Electrical resistivity measurements confirmed superconducting transitions in all samples. Notably, the 0.5 wt.% Nd<sub>2</sub>O<sub>3</sub> sample exhibited an optimal <i>T</i><sub><i>c-onset</i></sub> of 94.14 K with a narrow transition width Δ<i>T</i><sub><i>c</i></sub> of 4.04 K. In contrast, the higher 5.0 wt.% Nd<sub>2</sub>O<sub>3</sub> concentration resulted in a broader Δ<i>T</i><sub><i>c</i></sub> of 7.47 K, suggesting the lower doping provided more optimal superconducting performance. AC susceptibility measurements corroborated these findings. This DM method offers a cost-effective approach for Y-123 synthesis, with potential for further optimization through alkali metal doping to reduce costs and environmental impact.</p></div>\",\"PeriodicalId\":473,\"journal\":{\"name\":\"Applied Physics A\",\"volume\":\"130 12\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics A\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00339-024-08035-z\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics A","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00339-024-08035-z","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhancing superconducting properties of YBa2Cu3O7- ẟ through Nd2O3 addition prepared using modified thermal decomposition method
Polycrystalline YBa2Cu3O7−δ (Y-123) samples with different varying weight percentages (x = 0.0, 0.1, 0.3, 0.5, 1.0, and 5.0 wt.%) of neodymium oxide (Nd2O3) addition have been successfully synthesized using a modified thermal decomposition method (DM) under ambient conditions. X-ray diffraction (XRD) analysis revealed favorable orthorhombicity values (~ 0.008) for the Y-123 crystal structure, and an estimated oxygen content close to the theoretical value (~ 6.8), along with the presence of light secondary phases such as Y2BaCuO5 (Y-211) and BaCuO2. For FESEM analysis, it was found that 5.0 wt.% Nd2O3 increased porosity and reduced grain size, negatively impacting superconductivity. Conversely, 0.5 wt.% Nd2O3 promoted significant grain growth, leading to enhanced grain contact and a denser microstructure. Electrical resistivity measurements confirmed superconducting transitions in all samples. Notably, the 0.5 wt.% Nd2O3 sample exhibited an optimal Tc-onset of 94.14 K with a narrow transition width ΔTc of 4.04 K. In contrast, the higher 5.0 wt.% Nd2O3 concentration resulted in a broader ΔTc of 7.47 K, suggesting the lower doping provided more optimal superconducting performance. AC susceptibility measurements corroborated these findings. This DM method offers a cost-effective approach for Y-123 synthesis, with potential for further optimization through alkali metal doping to reduce costs and environmental impact.
期刊介绍:
Applied Physics A publishes experimental and theoretical investigations in applied physics as regular articles, rapid communications, and invited papers. The distinguished 30-member Board of Editors reflects the interdisciplinary approach of the journal and ensures the highest quality of peer review.