干旱地区不同灌溉和施肥管理措施下碱性土壤中氨排放变化的驱动机制

IF 3.8 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Yang Wenzhu, Jia Yongqin, Yu Jianguang, Yang Jie, Gu Peng, Yan Yingchao, Wang Kai, Jiao Yan
{"title":"干旱地区不同灌溉和施肥管理措施下碱性土壤中氨排放变化的驱动机制","authors":"Yang Wenzhu,&nbsp;Jia Yongqin,&nbsp;Yu Jianguang,&nbsp;Yang Jie,&nbsp;Gu Peng,&nbsp;Yan Yingchao,&nbsp;Wang Kai,&nbsp;Jiao Yan","doi":"10.1007/s11270-024-07603-6","DOIUrl":null,"url":null,"abstract":"<div><p>The strategy to reduce agricultural ammonia (NH<sub>3</sub>) emissions is a focus of attention for governments and scientists around the world. However, the effect of different irrigation and fertilization management practices on NH<sub>3</sub> emission in alkaline soil and the underlining mechanisms are poorly understood. An experiment with drip fertigation (a combination of fertilizing and irrigation), sprinkler fertigation, and traditional furrow irrigation with chemical fertilizer spraying was conducted in potato fields with alkaline soil in arid areas of Northwest China. The objective of this study was to investigate the effect of three irrigation and fertilization management practices on NH<sub>3</sub> emissions using the static box-venting method in a three-year in situ trial. There are significant seasonal difference for NH<sub>3</sub> emission fluxes in alkaline soils under different fertilization and irrigation management practices. The accumulative NH<sub>3</sub> emissions in the alkaline soil from drip fertigation and sprinkler fertigation was 55.93% and 54.05% lower than that from traditional furrow irrigation, respectively. The dynamic changes of NH<sub>4</sub><sup>+</sup>-N and NO<sub>3</sub><sup>−</sup>-N in alkaline soil were the most important factors controlling the differences of NH<sub>3</sub> emissions under different irrigation and fertilization methods. Drip fertigation significantly reduced NH<sub>3</sub> emission intensity in alkaline soil, and were important measures for reducing agricultural NH<sub>3</sub> emissions and ensuring potato yield in alkaline soil farmland in arid regions.</p></div>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":"235 12","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Mechanisms Driving Ammonia Emission Variations in Alkaline Soil Under Different Irrigation and Fertilization Management Practices in Arid Regions\",\"authors\":\"Yang Wenzhu,&nbsp;Jia Yongqin,&nbsp;Yu Jianguang,&nbsp;Yang Jie,&nbsp;Gu Peng,&nbsp;Yan Yingchao,&nbsp;Wang Kai,&nbsp;Jiao Yan\",\"doi\":\"10.1007/s11270-024-07603-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The strategy to reduce agricultural ammonia (NH<sub>3</sub>) emissions is a focus of attention for governments and scientists around the world. However, the effect of different irrigation and fertilization management practices on NH<sub>3</sub> emission in alkaline soil and the underlining mechanisms are poorly understood. An experiment with drip fertigation (a combination of fertilizing and irrigation), sprinkler fertigation, and traditional furrow irrigation with chemical fertilizer spraying was conducted in potato fields with alkaline soil in arid areas of Northwest China. The objective of this study was to investigate the effect of three irrigation and fertilization management practices on NH<sub>3</sub> emissions using the static box-venting method in a three-year in situ trial. There are significant seasonal difference for NH<sub>3</sub> emission fluxes in alkaline soils under different fertilization and irrigation management practices. The accumulative NH<sub>3</sub> emissions in the alkaline soil from drip fertigation and sprinkler fertigation was 55.93% and 54.05% lower than that from traditional furrow irrigation, respectively. The dynamic changes of NH<sub>4</sub><sup>+</sup>-N and NO<sub>3</sub><sup>−</sup>-N in alkaline soil were the most important factors controlling the differences of NH<sub>3</sub> emissions under different irrigation and fertilization methods. Drip fertigation significantly reduced NH<sub>3</sub> emission intensity in alkaline soil, and were important measures for reducing agricultural NH<sub>3</sub> emissions and ensuring potato yield in alkaline soil farmland in arid regions.</p></div>\",\"PeriodicalId\":808,\"journal\":{\"name\":\"Water, Air, & Soil Pollution\",\"volume\":\"235 12\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water, Air, & Soil Pollution\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11270-024-07603-6\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-024-07603-6","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

减少农业氨(NH3)排放的战略是世界各国政府和科学家关注的焦点。然而,人们对不同灌溉和施肥管理方法对碱性土壤中 NH3 排放的影响及其基本机制知之甚少。在中国西北干旱地区的碱性土壤马铃薯田中进行了滴灌施肥(施肥与灌溉相结合)、喷灌施肥和传统沟灌加化肥喷洒的试验。本研究的目的是在为期三年的原地试验中,采用静态箱式通风法研究三种灌溉和施肥管理方法对 NH3 排放的影响。结果表明,在不同施肥和灌溉管理措施下,碱性土壤中的 NH3 排放通量存在明显的季节性差异。滴灌施肥和喷灌施肥在碱性土壤中的 NH3 累积排放量分别比传统沟灌低 55.93% 和 54.05%。碱性土壤中NH4+-N和NO3--N的动态变化是控制不同灌溉施肥方式下NH3排放量差异的最重要因素。滴灌施肥显著降低了碱性土壤中的NH3排放强度,是干旱地区碱性土壤农田减少农业NH3排放、确保马铃薯产量的重要措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Mechanisms Driving Ammonia Emission Variations in Alkaline Soil Under Different Irrigation and Fertilization Management Practices in Arid Regions

The strategy to reduce agricultural ammonia (NH3) emissions is a focus of attention for governments and scientists around the world. However, the effect of different irrigation and fertilization management practices on NH3 emission in alkaline soil and the underlining mechanisms are poorly understood. An experiment with drip fertigation (a combination of fertilizing and irrigation), sprinkler fertigation, and traditional furrow irrigation with chemical fertilizer spraying was conducted in potato fields with alkaline soil in arid areas of Northwest China. The objective of this study was to investigate the effect of three irrigation and fertilization management practices on NH3 emissions using the static box-venting method in a three-year in situ trial. There are significant seasonal difference for NH3 emission fluxes in alkaline soils under different fertilization and irrigation management practices. The accumulative NH3 emissions in the alkaline soil from drip fertigation and sprinkler fertigation was 55.93% and 54.05% lower than that from traditional furrow irrigation, respectively. The dynamic changes of NH4+-N and NO3-N in alkaline soil were the most important factors controlling the differences of NH3 emissions under different irrigation and fertilization methods. Drip fertigation significantly reduced NH3 emission intensity in alkaline soil, and were important measures for reducing agricultural NH3 emissions and ensuring potato yield in alkaline soil farmland in arid regions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water, Air, & Soil Pollution
Water, Air, & Soil Pollution 环境科学-环境科学
CiteScore
4.50
自引率
6.90%
发文量
448
审稿时长
2.6 months
期刊介绍: Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments. Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation. Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信