石墨烯衍生物功能化聚己内酯/明胶电纺纳米纤维膜:极具神经组织工程潜力的多功能支架

IF 4.7 3区 工程技术 Q2 ENGINEERING, ENVIRONMENTAL
Negin Borzooee Moghadam, Manizheh Avatefi, Mehrdad Shavali, Matin Mahmoudifard
{"title":"石墨烯衍生物功能化聚己内酯/明胶电纺纳米纤维膜:极具神经组织工程潜力的多功能支架","authors":"Negin Borzooee Moghadam,&nbsp;Manizheh Avatefi,&nbsp;Mehrdad Shavali,&nbsp;Matin Mahmoudifard","doi":"10.1007/s10924-024-03407-1","DOIUrl":null,"url":null,"abstract":"<div><p>Injuries to the nervous system continue to be a problem on a global scale due to the limited capacity of the nervous system to self-repair. Today, electrospun nanofibrous membranes (NFMs) are widely used in nerve tissue engineering due to their advanced properties such as low-cost, being uncomplicated, the potential to give direction to neurite outgrowth, and their highly manageable properties. Recently, the fabrication of functionalized NFMs has been proposed as a viable strategy to help restore the function of the nervous system. This would be accomplished by creating the ideal microenvironment that could mimic the features of the extracellular matrix of neural cells such as conductivity. The main objective of this project was to construct a biocompatible and electro-conductive NFM with the potential to promote proliferation and induce differentiation into neuron-like cells in PC12 cells. Basic PCL and gelatin based scaffolds seem to lack the highly desired properties of cellular implants for neural tissue engineering such as high biocompatibility, tailored biodegradability, high antibacterial, and ROS scavenging properties. For this purpose, Poly(ε-caprolactone)/gelatin (PG) electrospun nanofibrous scaffolds were coated with GO and GQD through Mussel-inspired polydopamine (DOPA) (PG-DOPA-GO and PG-DOPA-GQD). There is a dearth of research on the application of GQD in neural tissue engineering, and there is no comparative assessment of GO and GQD’s effectiveness when coated through DOPA on the surface of PG NFM, in PC12 differentiation. For the first time, the outcomes of these NFMs, as neural tissue engineering scaffolds are assessed and contrasted from the standpoints of surface, structure, mechanical, and biological aspects. Apart from that, as far as we know, this is the first work using graphene-based nanomaterials via polydopamine mediated coatings in PG NFMs for nerve tissue engineering. The NFMs structural analysis through SEM, FTIR, and EDAX determined that the nanofibrous membranes are porous and truly coated by DOPA, GO, and GQD. It was also demonstrated that PG-DOPA-GO and PG-DOPA-GQD NFMs are highly conductive, hemo-compatible, antibacterial, possessing good hydrophilicity. At the same time, they are displayed to be biodegradable with adjustable structural integrity and stiffness. The NFMs potential to induce the expression of neuron-like differentiation factors in the PC12 cells cultured on the scaffold was determined by introducing neurofilament-200 (NF200) and Nestin antibodies after 7 days’ cell ceding. Simultaneously, qRT-PCR analysis confirmed that the NF-200 and Nestin genes, both among the important genes regulating neural differentiation, are highly expressed when the conductivity and biocompatibility of the scaffold are increased through GO coating. Overall, the PG-DOPA-GO NFM was determined to outperform the other scaffolds regarding increased proliferation, viability, and neuron-like differentiation-related factors in PC12 cells, both assessed by ICC and qRT-PCR, in vitro.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":"32 12","pages":"6698 - 6724"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graphene Derivatives Functionalized Polycaprolactone/Gelatin Electrospun Nanofibrous Membrane Through Mussel-Inspired Polydopamine: Multifunctional Scaffold with High Potential for Nerve Tissue Engineering\",\"authors\":\"Negin Borzooee Moghadam,&nbsp;Manizheh Avatefi,&nbsp;Mehrdad Shavali,&nbsp;Matin Mahmoudifard\",\"doi\":\"10.1007/s10924-024-03407-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Injuries to the nervous system continue to be a problem on a global scale due to the limited capacity of the nervous system to self-repair. Today, electrospun nanofibrous membranes (NFMs) are widely used in nerve tissue engineering due to their advanced properties such as low-cost, being uncomplicated, the potential to give direction to neurite outgrowth, and their highly manageable properties. Recently, the fabrication of functionalized NFMs has been proposed as a viable strategy to help restore the function of the nervous system. This would be accomplished by creating the ideal microenvironment that could mimic the features of the extracellular matrix of neural cells such as conductivity. The main objective of this project was to construct a biocompatible and electro-conductive NFM with the potential to promote proliferation and induce differentiation into neuron-like cells in PC12 cells. Basic PCL and gelatin based scaffolds seem to lack the highly desired properties of cellular implants for neural tissue engineering such as high biocompatibility, tailored biodegradability, high antibacterial, and ROS scavenging properties. For this purpose, Poly(ε-caprolactone)/gelatin (PG) electrospun nanofibrous scaffolds were coated with GO and GQD through Mussel-inspired polydopamine (DOPA) (PG-DOPA-GO and PG-DOPA-GQD). There is a dearth of research on the application of GQD in neural tissue engineering, and there is no comparative assessment of GO and GQD’s effectiveness when coated through DOPA on the surface of PG NFM, in PC12 differentiation. For the first time, the outcomes of these NFMs, as neural tissue engineering scaffolds are assessed and contrasted from the standpoints of surface, structure, mechanical, and biological aspects. Apart from that, as far as we know, this is the first work using graphene-based nanomaterials via polydopamine mediated coatings in PG NFMs for nerve tissue engineering. The NFMs structural analysis through SEM, FTIR, and EDAX determined that the nanofibrous membranes are porous and truly coated by DOPA, GO, and GQD. It was also demonstrated that PG-DOPA-GO and PG-DOPA-GQD NFMs are highly conductive, hemo-compatible, antibacterial, possessing good hydrophilicity. At the same time, they are displayed to be biodegradable with adjustable structural integrity and stiffness. The NFMs potential to induce the expression of neuron-like differentiation factors in the PC12 cells cultured on the scaffold was determined by introducing neurofilament-200 (NF200) and Nestin antibodies after 7 days’ cell ceding. Simultaneously, qRT-PCR analysis confirmed that the NF-200 and Nestin genes, both among the important genes regulating neural differentiation, are highly expressed when the conductivity and biocompatibility of the scaffold are increased through GO coating. Overall, the PG-DOPA-GO NFM was determined to outperform the other scaffolds regarding increased proliferation, viability, and neuron-like differentiation-related factors in PC12 cells, both assessed by ICC and qRT-PCR, in vitro.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":659,\"journal\":{\"name\":\"Journal of Polymers and the Environment\",\"volume\":\"32 12\",\"pages\":\"6698 - 6724\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymers and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10924-024-03407-1\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymers and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10924-024-03407-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

由于神经系统的自我修复能力有限,神经系统损伤仍然是一个全球性问题。如今,电纺纳米纤维膜(NFMs)因其低成本、不复杂、可引导神经元生长以及易于管理等先进特性而被广泛应用于神经组织工程。最近,有人提出将制造功能化 NFM 作为帮助恢复神经系统功能的可行策略。要实现这一目标,就必须创造理想的微环境,模拟神经细胞细胞外基质的导电性等特征。本项目的主要目标是构建一种具有生物相容性和导电性的 NFM,它具有促进 PC12 细胞增殖并诱导分化为神经元样细胞的潜力。基于 PCL 和明胶的基本支架似乎缺乏神经组织工程细胞植入物所需的高生物相容性、定制生物降解性、高抗菌性和清除 ROS 特性。为此,通过贻贝启发的聚多巴胺(DOPA)(PG-DOPA-GO 和 PG-DOPA-GQD),在聚(ε-己内酯)/明胶(PG)电纺纳米纤维支架上涂覆了 GO 和 GQD。关于 GQD 在神经组织工程中的应用的研究还很缺乏,也没有对通过 DOPA 在 PG NFM 表面涂覆 GO 和 GQD 在 PC12 分化中的效果进行比较评估。本次研究首次从表面、结构、机械和生物等方面评估和对比了这些 NFM 作为神经组织工程支架的效果。此外,据我们所知,这是首次将石墨烯基纳米材料通过聚多巴胺介导涂层应用于 PG NFMs 神经组织工程中。通过 SEM、FTIR 和 EDAX 对 NFMs 的结构分析,确定了纳米纤维膜是多孔的,并且真正由 DOPA、GO 和 GQD 包覆。研究还表明,PG-DOPA-GO 和 PG-DOPA-GQD 纳米纤维膜具有高导电性、血液相容性、抗菌性和良好的亲水性。同时,它们还具有可生物降解性,结构完整性和硬度可调。细胞培养 7 天后,通过引入神经丝-200(NF200)和 Nestin 抗体,测定了 NFMs 诱导 PC12 细胞表达神经元样分化因子的潜力。同时,qRT-PCR 分析证实,当通过 GO 镀膜提高支架的导电性和生物相容性时,NF-200 和 Nestin 基因都会高表达,而这两个基因都是调控神经分化的重要基因。总之,通过体外 ICC 和 qRT-PCR 评估,PG-DOPA-GO NFM 在增加 PC12 细胞的增殖、活力和神经元样分化相关因子方面优于其他支架。 图文摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Graphene Derivatives Functionalized Polycaprolactone/Gelatin Electrospun Nanofibrous Membrane Through Mussel-Inspired Polydopamine: Multifunctional Scaffold with High Potential for Nerve Tissue Engineering

Graphene Derivatives Functionalized Polycaprolactone/Gelatin Electrospun Nanofibrous Membrane Through Mussel-Inspired Polydopamine: Multifunctional Scaffold with High Potential for Nerve Tissue Engineering

Injuries to the nervous system continue to be a problem on a global scale due to the limited capacity of the nervous system to self-repair. Today, electrospun nanofibrous membranes (NFMs) are widely used in nerve tissue engineering due to their advanced properties such as low-cost, being uncomplicated, the potential to give direction to neurite outgrowth, and their highly manageable properties. Recently, the fabrication of functionalized NFMs has been proposed as a viable strategy to help restore the function of the nervous system. This would be accomplished by creating the ideal microenvironment that could mimic the features of the extracellular matrix of neural cells such as conductivity. The main objective of this project was to construct a biocompatible and electro-conductive NFM with the potential to promote proliferation and induce differentiation into neuron-like cells in PC12 cells. Basic PCL and gelatin based scaffolds seem to lack the highly desired properties of cellular implants for neural tissue engineering such as high biocompatibility, tailored biodegradability, high antibacterial, and ROS scavenging properties. For this purpose, Poly(ε-caprolactone)/gelatin (PG) electrospun nanofibrous scaffolds were coated with GO and GQD through Mussel-inspired polydopamine (DOPA) (PG-DOPA-GO and PG-DOPA-GQD). There is a dearth of research on the application of GQD in neural tissue engineering, and there is no comparative assessment of GO and GQD’s effectiveness when coated through DOPA on the surface of PG NFM, in PC12 differentiation. For the first time, the outcomes of these NFMs, as neural tissue engineering scaffolds are assessed and contrasted from the standpoints of surface, structure, mechanical, and biological aspects. Apart from that, as far as we know, this is the first work using graphene-based nanomaterials via polydopamine mediated coatings in PG NFMs for nerve tissue engineering. The NFMs structural analysis through SEM, FTIR, and EDAX determined that the nanofibrous membranes are porous and truly coated by DOPA, GO, and GQD. It was also demonstrated that PG-DOPA-GO and PG-DOPA-GQD NFMs are highly conductive, hemo-compatible, antibacterial, possessing good hydrophilicity. At the same time, they are displayed to be biodegradable with adjustable structural integrity and stiffness. The NFMs potential to induce the expression of neuron-like differentiation factors in the PC12 cells cultured on the scaffold was determined by introducing neurofilament-200 (NF200) and Nestin antibodies after 7 days’ cell ceding. Simultaneously, qRT-PCR analysis confirmed that the NF-200 and Nestin genes, both among the important genes regulating neural differentiation, are highly expressed when the conductivity and biocompatibility of the scaffold are increased through GO coating. Overall, the PG-DOPA-GO NFM was determined to outperform the other scaffolds regarding increased proliferation, viability, and neuron-like differentiation-related factors in PC12 cells, both assessed by ICC and qRT-PCR, in vitro.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Polymers and the Environment
Journal of Polymers and the Environment 工程技术-高分子科学
CiteScore
9.50
自引率
7.50%
发文量
297
审稿时长
9 months
期刊介绍: The Journal of Polymers and the Environment fills the need for an international forum in this diverse and rapidly expanding field. The journal serves a crucial role for the publication of information from a wide range of disciplines and is a central outlet for the publication of high-quality peer-reviewed original papers, review articles and short communications. The journal is intentionally interdisciplinary in regard to contributions and covers the following subjects - polymers, environmentally degradable polymers, and degradation pathways: biological, photochemical, oxidative and hydrolytic; new environmental materials: derived by chemical and biosynthetic routes; environmental blends and composites; developments in processing and reactive processing of environmental polymers; characterization of environmental materials: mechanical, physical, thermal, rheological, morphological, and others; recyclable polymers and plastics recycling environmental testing: in-laboratory simulations, outdoor exposures, and standardization of methodologies; environmental fate: end products and intermediates of biodegradation; microbiology and enzymology of polymer biodegradation; solid-waste management and public legislation specific to environmental polymers; and other related topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信